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No quarrel between the Ancients and the Moderns
New research strands

• Before 2007, derivatives pricing held the lion’s share in the
academic/professional research landscape.

• Post-crisis research topics: market microstructure, limit order
books, market impact, optimal execution, market making,
systemic risk, xVA, risk management, etc.

• Related to:
1. the crisis,
2. new regulations and changes following MiFID (Europe) and

Reg. NMS (US),
3. new technology (HFT).

Main goals of the lectures
• Presenting classical models/approaches for optimal execution.
• Showing that these models/approaches can be used to

address classical problems in a different way.
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• The Almgren-Chriss model and some generalizations.
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Tomorrow: Pricing in the Almgren-Chriss framework
• Block trade pricing.
• Vanilla option pricing and hedging.
• Accelerated Share Repurchase (ASR) contracts.

Next week: Asset management with execution costs
• Markowitz/Merton in the Almgren-Chriss framework.
• Introduction of Bayesian learning.
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history of stock exchanges and the
mathematics of market making.
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Lecture 1:
The Almgren-Chriss model

revisited.
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Optimal Liquidation
Basic question:

How to optimally liquidate a portfolio with q0 shares?

Classical trade-off
• Liquidating fast is costly: execution costs and market impact.
• But if one liquidates too slowly...
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The original Almgren-Chriss framework (my way)

The origins
• Introduced in two papers (1999, 2000).
• Market impact and execution costs.

Liquidation of q0 > 0 shares: framework in discrete time
• Time: t0 = 0 < . . . < tn = n∆t < . . . < tN = N∆t = T .
• Number of shares: qn+1 = qn − vn+1∆t.
• Price: Sn+1 = Sn + σ

√
∆tεn+1 − kvn+1∆t.

• Cash: Xn+1 = Xn + vn+1Sn∆t − ηv2
n+1∆t.

The random variables (εn)n are i.i.d. N (0, 1) variables.
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The original Almgren-Chriss framework
Optimization problem
Maximizing

E [XN ]− γ

2V [XN ] .

over

(vn)n ∈ Ad =
{

(v1, . . . , vN) ∈ RN ,
N−1∑
n=0

vn+1∆t = q0

}
.

Cash account at time tN = T

XN = X0 + q0S0 −
k
2q

2
0 + σ

√
∆t

N−1∑
n=0

qn+1εn+1

−
N−1∑
n=0

(η − k
2∆t)︸ ︷︷ ︸

=η̃>0

v2
n+1∆t.
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The original Almgren-Chriss framework

Moments of XN

E [XN ] = X0 + q0S0 −
k
2q

2
0 −

N−1∑
n=0

η̃v2
n+1∆t.

V [XN ] = σ2∆t
N−1∑
n=0

q2
n+1.

Minimization problem
N−1∑
n=0

η̃v2
n+1∆t + γ

2σ
2∆t

N−1∑
n=0

q2
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=
N−1∑
n=0

η̃

∆t (qn − qn+1)2 + γ

2σ
2∆t

N−1∑
n=0

q2
n+1.
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The original Almgren-Chriss framework
First order condition
The minimizer q∗ is the solution of the second-order recursive
equation

q∗n+2 −
(
2 + γσ2

2η̃ ∆t2
)
q∗n+1 + q∗n = 0,

with boundary conditions q∗0 = q0 and q∗N = 0.

Solution: the sinh formula (in discrete time)

q∗n = q0
sinh (α(T − tn))

sinh (αT ) ,

where α is the unique positive solution of

2 (cosh(α∆t)− 1) = γσ2

2η̃ ∆t2.
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Almgren-Chriss model: a general framework

We consider the liquidation of q0 > 0 shares.

Framework in continuous time with 4 variables

• Time: t
• Number of shares: qt = q0 −

´ t
0 vsds

• Price: dSt = σdWt − kvtdt
• Cash: dXt = vtStdt − vtg

(
vt
Vt

)
dt = vtStdt − VtL

(
vt
Vt

)
dt

where (Vt)t is the market volume curve, assumed to be
deterministic.

L is strictly convex, (even), asymptotically superlinear, increasing
on R+, with L(0) = 0. In practice:

L(ρ) = η|ρ|1+φ + ψ|ρ|
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Almgren-Chriss model: a general framework

Optimization problem

sup
(vt )t∈A

E [− exp(−γXT )]

Admissible strategies are related to Implementation Shortfall (IS)
orders with/without participation constraints:

Awithout =
{

(vt)t∈[0,T ] prog mes ,
ˆ T

0
|vt |dt ∈ L∞,

ˆ T

0
vtdt = q0

}

Awith =
{

(vt)t∈[0,T ] prog mes , |vt | ≤ ρmaxVt ,

ˆ T

0
vtdt = q0

}
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Almgren-Chriss model: a general framework

Expression of XT

XT = X0 + q0S0 −
k
2q

2
0 + σ

ˆ T

0
qtdWt −

ˆ T

0
VtL

( vt
Vt

)
dt.

Remark: the cost associated with permanent market impact is
independent of the strategy.

Law of XT

If v ∈ A is deterministic, then XT is normally distributed with:

• mean: q0S0 − k
2q

2
0 −
´ T

0 VsL
(

vs
Vs

)
ds

• variance: σ2 ´ T
0 q2

s ds.
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Almgren-Chriss model: a general framework

By taking the Laplace transform, the problem boils down to the
following minimization problem:

Minimization problem

inf
q∈W 1,1

q0,0
(0,T )

I(q),

where
I(q) =

ˆ T

0

(
VsL

( q̇(s)
Vs

)
+ 1

2γσ
2q2(s)

)
ds.

Theorem (Existence and uniqueness of a minimizer)
There exists a unique minimizer q ∈W 1,1

q0,0(0,T ) of I. This
minimizer is a nonnegative and nonincreasing function.
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Almgren-Chriss model: a general framework
Hamiltonian characterization{

ṗ(t) = γσ2q(t)
q̇(t) = VtH ′(p(t)) q(0) = q0, q(T ) = 0,

where H(p) = sup|ρ|≤ρmax ρp − L(ρ) or H(p) = supρ ρp − L(ρ)

Quadratic case and flat volume curve: a linear ODE
If L(ρ) = ηρ2 and Vt = V then H(p) = p2

4η , and

q̈(t) = γσ2V
2η q(t), q(0) = q0, q(T ) = 0.

⇒ q(t) = q0

sinh
(√

γσ2V
2η (T − t)

)
sinh

(√
γσ2V

2η T
) .
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The optimality of deterministic strategies

E [− exp (−γXT )] =

− exp
(
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The optimality of deterministic strategies
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and equality is obtained for the deterministic strategy q∗.

This result means that there is an optimal trading curve,
computable ex-ante.
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Numerical methods and examples



Discretization of the Hamiltonian system
Hamiltonian equations

p′(t) = γσ2q∗(t),
q∗′(t) = VtH ′(p(t)),
q∗(0) = q0,
q∗(T ) = 0,

Discrete-time equivalent
pn+1 = pn + ∆tγσ2q∗n+1, 0 ≤ n < N − 1,
q∗n+1 = q∗n + ∆tVn+1H ′(pn), 0 ≤ n < N,
q∗0 = q0,
q∗N = 0.

We face a problem with initial and final conditions. It
requires a fixed-point approach.
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Numerical methods

Shooting method (simple portfolios)
pλn+1 = pλn + ∆tγσ2qλn+1, 0 ≤ n < N − 1,
qλn+1 = qλn + ∆tVn+1H ′(pλn ), 0 ≤ n < N,
qλ0 = q0,
pλ0 = λ.

→ Then we need to find λ such that qλT = 0 (by bisection method
for instance).

Other methods
• Newton’s method on the Hamiltonian system.
• Gradient descent on the convex problem.
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Examples

• S0 = 45 e,
• σ = 0.6 e·day−1/2·share−1, i.e., ' 21%,
• L(ρ) = η|ρ|1+φ + ψ|ρ|, where

η = 0.1 e·share−1, ψ = 0.004 e·share−1,
and φ = 0.75.

• For (Vt)t : average market volume curve
over a month.
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Examples

Figure: Optimal trading curve for q0 = 200,000 shares over one day
(T = 1), for different market volume curves. Solid line: market volume
curve (Vt)t . Dash-dotted line: flat market volume curve with 4,000,000
shares per day – γ = 5.10−6 e−1, ρmax = 5, so that the constraint is
never binding.



Examples

Figure: Optimal trading curve for q0 = 200,000 shares over one day
(T = 1), for different values of γ. Dash-dotted line: γ = 10−5 e−1. Solid
line: γ = 5.10−6 e−1. Dashed line: γ = 10−6 e−1 – ρmax = 5, as above.



Examples

Figure: Optimal trading curve for q0 = 200,000 shares over one day
(T = 1), for different values of ρmax. Solid line: ρmax = 5 (a very high
value, such that the constraint is never binding). Dash-dotted line (two
dots): ρmax = 20%. Dashed line: ρmax = 15%. Dash-dotted line (one
dot): ρmax = 10%.



Multidimensional extensions



Almgren-Chriss model for a multi-asset portfolio

We consider the liquidation of a portfolio with d different assets.

Framework in continuous time with 4 variables

• Time: t.
• Number of shares: qi

t = qi
0 −
´ t

0 v i
sds.

• Price: dS i
t = σidW i

t − k iv i
tdt.

(σ1W 1
t , . . . , σ

dW d
t )t has a nonsingular covariance matrix Σ.

• Cash: dXt =
∑d

i=1 v i
tS i

tdt − V i
t Li

(
v i

t
V i

t

)
dt.

Remark: no “cross” impact, but interactions between assets
through Σ.
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Almgren-Chriss model for a multi-asset portfolio

Value of XT for liquidation strategies

XT = X0 +
d∑

i=1
qi

0S i
0 −

d∑
i=1

k i

2 qi
0

2

+
d∑

i=1

ˆ T

0
qi

tσ
idW i

t −
d∑

i=1

ˆ T

0
V i

t Li
(
v i

t
V i

t

)
dt.

Optimization problem

sup
(vt )t∈A

E [− exp(−γXT )]

Remark: as in the single-asset case, deterministic strategies are
optimal.
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Almgren-Chriss model for a multi-asset portfolio
Minimization problem
Minimize

J(q) =
ˆ T

0

( d∑
i=1

V i
t Li

(
qi ′(t)
V i

t

)
+ γ

2q(t) · Σq(t)
)
dt,

over the set of Rd -valued absolutely continuous functions
q ∈W 1,1(0,T ) satisfying the constraints q(0) = q0 and q(T ) = 0.

Hamilton characterization
p′(t) = γΣq∗(t),
qi∗′(t) = V i

t H i ′(pi (t)),∀i ,
q∗(0) = q0,
q∗(T ) = 0,

with H i (p) = supρ ρp − Li (ρ).
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Examples

Asset 1:

• S0 = 100 e,
• σ = 1.2 e·day−1/2·share−1,
• V = 3,000,000

shares·day−1,
• L(ρ) = η|ρ|1+φ + ψ|ρ|,

where η = 0.5 e·share−1,
φ = 0.5, and
ψ = 0.01 e·share−1.

Asset 2:

• S0 = 45 e,
• σ = 0.6 e·day−1/2·share−1

• V = 4,000,000
shares·day−1,

• L(ρ) = η|ρ|1+φ + ψ|ρ|,
where η = 0.1 e·share−1,
φ = 0.75, and
ψ = 0.004 e·share−1.
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Target Close orders



Almgren-Chriss for Target Close orders

Target Close orders
• Many agents want their orders to be executed at a price close

to the closing price of the day.

• Closing auction: possible for not too large orders, algorithms
for large orders.

• No closing auction: an algorithm is needed.

• Fixed quantity to trade at the closing auction (if any). The
remainder traded during the continuous auction.

Dynamics during the continuous auction
• Number of shares: qt = q0 −

´ t
0 vsds.

• Price: dSt = σdWt .
• Cash: dXt = vtStdt − VtL

(
vt
Vt

)
dt.
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Almgren-Chriss for Target Close orders

Intraday volume curves and auctions (credit: C.-A. Lehalle).



Almgren-Chriss for Target Close orders

Auction (vclose fixed ex-ante)

Sclose = ST + σcloseε,

Xclose = XT + vcloseSclose.

A =
{

(vt)t∈[0,T ],

ˆ T

0
|vt |dt ∈ L∞,

ˆ T

0
vtdt + vclose = q0

}

Optimization problem

sup
(vt )t∈A

E [− exp(−γ(Xclose − X0 − q0Sclose))]
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Almgren-Chriss for Target Close orders

Xclose − X0 − q0Sclose =

−(q0 − vclose)σcloseε− σ
ˆ T

0
(q0 − qt)dWt −

ˆ T

0
VtL

( vt
Vt

)
dt.

Minimization problem

inf
q∈W 1,1

q0,vclose (0,T )
Iclose(q),

where

Iclose(q) =
ˆ T

0

(
VsL

( q̇(s)
Vs

)
+ 1

2γσ
2(q0 − q(s))2

)
ds.
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Almgren-Chriss for Target Close orders

q̃(t) = q0 − q(T − t), Ṽt = VT−t .

New minimization problem

inf
q̃∈W 1,1

q0−vclose,0
(0,T )

J̃(q̃),

where
J̃(q̃) =

ˆ T

0

(
ṼtL

( q̃′(t)
Ṽt

)
+ 1

2γσ
2q̃(t)2

)
dt.

Same problem as for an IS order with q0 − vclose shares (with
time-reversed volume curve).
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Ṽt

)
+ 1

2γσ
2q̃(t)2

)
dt.

Same problem as for an IS order with q0 − vclose shares (with
time-reversed volume curve).



Example

Figure: Optimal trading curves for a Target Close order for q0 = 250,000
shares over one day (T = 1), when vclose = 50,000 shares, for different
values of γ. Dash-dotted line: γ = 10−5 e−1. Solid line: γ = 5.10−6

e−1. Dashed line: γ = 10−6 e−1.
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POV orders

Different kinds of orders
• Implementation Shortfall orders (classical AC).
• Target close orders (reverse IS).
• POV orders (with defined participation rate).
• VWAP orders (see Konishi, McCulloch and Kazakov, Frei and

Westray, etc.).
• etc.

Goals
• Determine the optimal rate for POV orders as a function of

the parameters.
• Find a way to choose the risk aversion parameter γ.
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POV orders

Optimization problem

sup
(vt )t∈APOV

E [− exp(−γXT )] ,

where T is a time such that
´ T

0 vtdt = q0.

• T is not fixed ex-ante.
• The set of admissible strategies is

APOV =
{

(vt)t , ∃ρ ∈ R∗+, vt = ρVt1´ t
0 vsds≤q0

}
.



POV orders

Cash account at time T

XT = q0S0 −
k
2q

2
0 −

L(ρ)
ρ

q0 + σρ

ˆ T

0

ˆ T

t
VsdsdWt .

If we take the Laplace transform, the problem boils down to
minimizing

Expression to minimize

L(ρ)
ρ

q0 + γ

2σ
2ρ2
ˆ T

0

(ˆ T

t
Vsds

)2

dt

If the volume curve is flat (Vs = V ), then:

L(ρ)
ρ

q0 + γ

6σ
2 q3

0
ρV
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POV orders

Optimal participation rate if L(ρ) = ηρ1+φ + ψ|ρ|

ρ∗ =
(
γσ2

6ηφ
q2

0
V

) 1
1+φ

.

• Does not depend on permanent market impact.
• Does not depend on ψ.
• Increasing with γ (risk aversion), σ (volatility), q0 (inventory)
• Decreasing with η (illiquidity), φ (when ρ ≤ 1)
• ρ∗V (volume we trade per unit of time) is increasing in V

(average daily volume).
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Choice of γ

Inversion of the formula

ρ∗ =
(
γσ2

6ηφ
q2

0
V

) 1
1+φ

⇒ γ = 6ηφV ρ∗1+φ

σ2q2
0

.

• γ has to be chosen.
• The above formula is a way to discover/reveal one’s risk

aversion.
• An empirical study could be carried out on cash equity desks.

Remark: We will discuss in Lecture 2 another way to choose γ.
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Final remarks



Strategies and tactics
A two-step process
The two-step approach is legitimated by the optimality of
deterministic strategies (in the model):

• Step 1 (strategies): Optimal scheduling – trading curve (the
problem addressed by Almgren and Chriss).

• Step 2 (tactics): Optimal tactics to follow the trading curve.

Tactics
• Decomposition into slices.
• Child order placement (venue, limit/marketable limit order,

price, timing, etc.).

→ Many heuristical methods.
→ Several interesting approaches: Cont-Kukanov, Guilbaud-Pham,
reinforcement learning, etc.
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Adaptive strategies?

The limits of the two-step process
Adaptive strategies are needed for taking account of:

• changes in volume expectation (intraday or at the close),
• changes in market impact,
• changes in market trend.

Possible to mix learning and optimal control (see Lecture 3 for an
instance).
Often forced to use heuristic methods.
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Market impact estimation – a very diversified literature
Several notions

• Single-order impact.
• Price return and volume imbalance (market data).
• Metaorder impact.

Several data sources
• Market data.
• Exchange data.
• Execution data (proprietary database).

Different approaches
• Empirical approaches.
• Theoretical approaches (see works by people from CFM to

reconcile random walks for prices and the long-range
autocorrelation of the order flow).
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Market impact estimation

Model à la Almgren-Chriss
• Estimation by Almgren and coauthors from Citigroup on

(Citigroup) execution data.
• Many in-house estimations in brokerage companies / on

cash-equity desks.

Transient market impact
In fact market impact is transient:

• Dynamic increase of the price.
• Square-root law.
• Decay.
• Permanent market impact vs. α.
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Market impact estimation

Many interesting papers
• Moro et al. (Spanish Stock Market and LSE)
• Tóth et al. (CFM data – on futures)
• Brokmann et al. (CFM data)
• Bershova and Rakhlin (AllianceBernstein data)
• Bacry et al. (Cheuvreux data)



End of Lecture 1

Thank you. Questions?



Lecture 2:
Pricing in the Almgren-Chriss

framework.



Introduction



Main questions
From optimization to pricing

• Lecture 1: how to liquidate a portfolio of q0 shares?
• Lecture 2: what should be the price of a portfolio of q0 shares?

→ the MtM price does not take account of market impact /
execution costs.

The pricing and hedging of derivatives
The Almgren-Chriss model can be used outside of the cash-equity
world.

• What happens to the pricing and hedging of derivatives when
one takes account of market impact/execution costs.

• How can we generalize classical results for vanilla options?
• How can we use the Almgren-Chriss model to price and hedge

ASR contracts?
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Block trade pricing



Block trade pricing
Question: what should be the price for a block of q0 > 0

shares?

Pricing approach
• Indifference pricing: the maximum price that one can pay to

get the shares and liquidate them (with nonnegative expected
utility).

• This price takes account of:
• market impact / execution costs,
• price risk.

Indifference price P(T , q0, S0)

sup
(vt )t∈A

E [− exp(−γ(XT − X0))] = − exp(−γP(T , q0,S0)),

with or without constraints.
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The value function θT (t, q)

Link with the value function
Using the results of Lecture 1 on IS orders, we find:

P(T , q0,S0) = q0S0 −
k
2q

2
0 − θT (0, q0),

where θT is the value function:

θT (t, q) = inf
q̃∈W 1,1

q,0 (t,T )

ˆ T

t

(
VsL

( q̃′(s)
Vs

)
+ 1

2γσ
2q̃2(s)

)
ds.



The value function θT (t, q)

Link with the value function
Using the results of Lecture 1 on IS orders, we find:

P(T , q0,S0) = q0S0 −
k
2q

2
0 − θT (0, q0),

where θT is the value function:

θT (t, q) = inf
q̃∈W 1,1

q,0 (t,T )

ˆ T

t

(
VsL

( q̃′(s)
Vs

)
+ 1

2γσ
2q̃2(s)

)
ds.



The value function θT (t, q) and the HJ equation

Proposition (Hamilton-Jacobi equation)

θT is a locally Lipschitz viscosity solution of the Hamilton-Jacobi
equation:

−∂tθT (t, q)− 1
2γσ

2q2 + VtH(∂qθT (t, q)) = 0, on [0,T )× R.

with

lim
t→T

θT (t, q) =
{
0, if q = 0,
+∞, otherwise.



The value function θT (t, q) and the first BTP formula

Proposition (Asymptotic behavior)
In the flat volume curve Vt = V case, if H is increasing on R+,
then:

lim
T→+∞

θT (t, q) = θ∞(q) =
ˆ q

0
H−1

(
γσ2

2V x2
)
dx ,

where H−1 is the inverse of H : R+ → R+.

Block trade pricing formula I

P(q,S) = qS − k
2q

2 −
ˆ q

0
H−1

(
γσ2

2V x2
)
dx

We call qS − P(q, S) a risk-liquidity premium/discount.
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Block trade pricing formula

If L(ρ) = η|ρ|1+φ + ψ|ρ| and without participation constraints:

P(q, S) = qS − `(q)

where

`(q) = k
2q

2 + ψq + η
1

1+φ

φ
φ

1+φ

(1 + φ)2

1 + 3φ

(
γσ2

2V

) φ
1+φ

q
1+3φ
1+φ

is the risk-liquidity discount/premium in this particular case.

This type of premium/discount gives a price to liquidity: it
can be used in many problems as a penalization function

(and to choose γ).
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POV Block trade pricing
In the case of POV orders, we can consider the certainty equivalent
and we obtain:

P(q0) and liquidity premium

P(q0) = q0S0︸ ︷︷ ︸
MtM value

− k
2q

2
0︸︷︷︸

perm. m.i.

−ψq0 − η
1

1+φ

(
γσ2

6φV

) φ
1+φ

q
1+3φ
1+φ

0︸ ︷︷ ︸
exec. costs

−φη
1

1+φ

(
γσ2

6φV

) φ
1+φ

q
1+3φ
1+φ

0︸ ︷︷ ︸
price risk

.



Comparison between IS and POV

When executing at constant rate of participation, the certainty
equivalent is:

qS − premiumPOV = MtM price− premiumPOV

When executing with no constraint (IS and T →∞), the certainty
equivalent is:

qS − premiumIS = MtM price− premiumIS

An interesting result is:

1 ≥ premiumIS
premiumPOV

≥ 3
φ

1+φ
1 + φ

1 + 3φ ≥
e log(3)
2
√
3
' 0.86

At most 15% difference between IS and POV in terms of
certainty equivalent.
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Other questions linked to liquidation and block trade
pricing

Other problems can be addressed with the Almgren-Chriss
modelling framework:

• VWAP orders,
• Guaranteed VWAP contracts,
• Target Close orders,
• Guaranteed Close contracts,
• etc.

But also problems outside of cash trading...
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Vanilla option pricing and hedging



Introduction - Option pricing / hedging

• Classical framework for option pricing: Black-Scholes and
extensions → frictionless market, price-taker agent

• Sometimes super-replication + transaction costs but...

Issues
• Not suited for options on illiquid assets.
• Not suited to large-nominal options.
• Not suited when Γ is too large.
• No difference between physical and cash settlement.
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Optimal execution and options
Other routes

• Transaction costs (fixed or proportional),
• Supply curve approach (Çetin-Jarrow-Protter (2004),

Çetin-Soner-Touzi (2010)).
• A few papers with some form of market impact (Lasry-Lions,

Abergel-Loeper, Bouchard-Loeper)

Recently, optimal execution met option pricing:

• L. C. Rogers, S. Singh, The cost of illiquidity and its effects
on hedging. Mathematical Finance, 20(4), 597-615, 2010.

• O. Guéant, J. Pu, Option pricing and hedging with execution
costs and market impact, Mathematical Finance, 2015.

• T. M. Li, R. Almgren, Option hedging with smooth market
impact, MML, 2016.
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Not a fantasy
Interesting quant note: What does the saw-tooth pattern on US
markets on 19 July 2012 tell us about the price formation process?,
C.-A. Lehalle et al., Crédit Agricole Cheuvreux Quant Note, Aug.
2012.

Figure: Saw tooth patterns on large caps



Not a fantasy

... Not small caps but major US stocks.

Figure: Saw tooth patterns on large caps



Call option

Call/Put option on a stock with:

• Strike K
• Maturity T
• Nominal N (in shares)

N matters because the introduction of execution costs and market
impact makes the problem a non-linear one.
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Notations

Model without permanent market impact for the sake of simplicity
(permanent market impact corresponds to a change of variables in
this model).

Framework in continuous time with 4 variables
• Time: t
• Number of shares: qt = q0 +

´ t
0 vsds

• Price: dSt = σdWt

• Cash: dXt = −vtStdt − VtL
(

vt
Vt

)
dt

Remarks:
• q0 is important here.
• Vt can be set to 0 at night!
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Example: payoff of selling a call option (physical
settlement)

Case 1 – the option is exercised:
• The trader has whatever is on his cash account XT

• The trader receives KN
• The trader buys (N − qT ) shares and deliver N shares

The payoff in that case is:

XT︸︷︷︸
cash account

+ KN︸︷︷︸
payment of the client

− ((N − qT )ST + `(N − qT ))︸ ︷︷ ︸
cost of buying N − qT shares
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Example: payoff of selling a call option (physical
settlement)

Case 2 – the option is not exercised:
• The trader has whatever is on his cash account XT .
• The trader liquidates the qT shares remaining in his portfolio.

The payoff in that case is:

XT︸︷︷︸
cash account

+ qTST − `(qT )︸ ︷︷ ︸
gain of selling the qT shares

Payoff
XT + qTST + 1ST≥K (N(K − ST )− `(N − qT ))− 1ST<K `(qT )
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Payoffs

Option Position Settlement Terminal wealth

Call
Short PS XT + qT ST − N(ST − K)+ −

(
`(N − qT )1ST >K + `(qT )1ST ≤K

)
CS XT + qT ST − N(ST − K)+ − `(qT )

Long PS XT + qT ST + N(ST − K)+ −
(
`(N + qT )1ST >K + `(qT )1ST ≤K

)
CS XT + qT ST + N(ST − K)+ − `(qT )

Put
Short PS XT + qT ST − N(ST − K)− −

(
`(N + qT )1ST <K + `(qT )1ST ≥K

)
CS XT + qT ST − N(ST − K)− − `(qT )

Long PS XT + qT ST + N(ST − K)− −
(
`(N − qT )1ST <K + `(qT )1ST ≥K

)
CS XT + qT ST + N(ST − K)− − `(qT )

Table: Terminal wealth for the different vanilla options.



Optimization Problem

Hereafter, we consider that the bank has sold a call option
with physical settlement.

Optimization Problem
The bank maximizes its expected utility:

sup
v∈A

E [− exp (−γYT )] ,

where YT = XT + qTST

+1ST≥K (N(K − ST )− `(N − qT ))− 1ST<K `(qT )
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HJB Equation

The HJB equation associated with this stochastic optimal control
problem is:

HJB equation

0 = −∂tu −
1
2σ

2∂2
SSu − sup

v∈R

{
v∂qu +

(
−vS − L

( v
Vt

)
Vt

)
∂xu

}
with terminal condition:

u(T , x , q, S) = − exp
(
− γ

(
x + qS − 1S<K `(q)

+1S≥K (N(K − S)− `(N − q))
))



Change of variables

We use the following change of variables:

Definition
We introduce θ by:

u(t, x , q,S) = − exp (−γ (x + qS − θ(t, q,S)))

Indifference price
θ(0, q0,S0) can be interpreted as the indifference price of the
following contract:

• We write the call with the client
• We give q0S0 to the client in cash
• The client gives us q0 shares
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PDE for θ

The PDE satisfied by θ is the following:

PDE

−∂tθ −
1
2σ

2∂2
SSθ −

1
2γσ

2(∂Sθ − q)2 + VtH(∂qθ) = 0

where H is as above H(p) = sup
|ρ|≤ρm

{pρ− L(ρ)}.

Terminal condition
θ(T , q,S) = 1S≥K (N(S − K ) + `(N − q)) + 1S<K `(q)



PDE

Interpretation of the PDE:

−∂tθ −
1
2σ

2∂2
SSθ︸ ︷︷ ︸

Bachelier PDE

− 1
2γσ

2(∂Sθ − q)2︸ ︷︷ ︸
"Mishedge"

+ VtH(∂qθ)︸ ︷︷ ︸
Execution costs

= 0

Remark: This PDE is not an HJB equation. θ is rather the value
function of a player in a zero-sum differential game.

An optimal control is formally given by:

Optimal control

v?(t, q, S) = −VtH ′(∂qθ(t, q, S)).
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Reference scenario

• S0 = K = 45 e.
• σ = 0.6 e·day−1/2 (≈ 21% annual volatility).
• T = 63 days.
• V = 4 000 000 shares·day−1.
• N = 20 000 000 shares.
• L(ρ) = η|ρ|1+φ with η = 0.1 e ·shares−1 · day−1 and
φ = 0.75.
That corresponds to 9 bps for a participation rate of 30% and
13 bps for a participation rate of 50%.

• γ = 2 · 10−7e−1.
• ` corresponds to liquidation with POV at rate 50%.



Reference scenario
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Reference scenario
2 numerical methods: a tree method and a finite difference scheme.
We see that we do not mean-revert around the usual ∆.
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Reference scenario

Model/Method Bachelier Tree-Based approach PDE approach
Price 1.900 2.060 2.067

Table: Prices of the call option for the two numerical methods.

We see the difference between the classical model and our model.



Importance of the initial position
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Figure: Optimal portfolio when q0 = 0 and when a participation limit of
50% is imposed.



Execution Costs
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Execution Costs

When η increases:
• The trajectories are smoother.
• They are closer to the position 0.5N to avoid round trips.

When η → 0, we obtain the limiting case of ∆-Hedging.

The prices are given by:
η 0.2 0.1 0.05 0.01 0 (Bachelier)

Price of the call 2.14 2.06 2.01 1.94 1.90
• Prices are higher when η increases.



Price risk and risk aversion

• First risk (binary/digital): the trader will have to deliver either
N shares or none. Being averse to this risk encourages the
trader to stay close to a neutral portfolio with q = 0.5N.

• Second risk: price at which shares are bought/sold. Being
averse to price risk encourages the trader to have a portfolio
that evolves in the same direction as the price, as it is the
case in the Bachelier model.



Price risk and risk aversion
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Price risk and risk aversion

The two effects are important. In terms of price there is a
monotone dependence:

γ 1 · 10−8 2 · 10−8 5 · 10−8 2 · 10−7 1 · 10−6 2 · 10−6 5 · 10−6

Price of the call 1.955 1.968 1.994 2.060 2.207 2.308 2.521

Table: Prices of the call option for different values of γ .

Prices are increasing with γ. Prices also increase with σ.



Extensions

Many extensions are possible (see the paper)
• Interest rate r .
• Drift µ.
• Permanent market impact k (just a change of variables).

Also in the paper
• Change of variables: θ̃(t, q̃) = 1

N θ(t,Nq̃).
• Comparison with Bachelier hedging with different frequencies.
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ASR contracts



Introduction

Beyond option pricing
• We have just addressed a classical option pricing/hedging

problem with tools from optimal execution.

• Let us now consider a problem with both execution issues and
optional features:

Accelerated Share Repurchase contracts.

• ASR contracts are used by firms to buy back shares instead of
paying dividends (e.g. tax reason).

• Instead of buying shares on the market, they ask a bank to do
so and the contract includes an option for the bank (see
below).
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Introduction

Why ASR contracts?
Why not simply buying shares on markets?

• In order to commit to the decision of a share repurchase
program!

• Many repurchase programs are slowed down, postponed, or
cancelled after announcement (because of unexpected shocks
on prices for instance).

ASR contracts are mainly of two kinds: with fixed number of
shares / with fixed notional.
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ASR Contracts (fixed number of shares Q)
A bank is asked by a firm to repurchase a number Q > 0 of the
firm’s own shares.

How it works
• At time t = 0, the bank borrows Q shares from shareholders

and delivers them to the firm.
• At time t = 0, the firms pays F to the bank.
• The bank buys back shares on the market to give them back

to initial shareholders.
• The bank chooses a date τ among a set of dates in [0,T ], to

exercise the option.
• At the exercise date τ , the firm pays QAτ − F to the bank,

where Aτ is the average price between 0 and τ .

Shares are sometimes delivered to the firm over [0, τ ] (not
borrowed) or at time τ : in that case, the ASR is not anymore
accelerated.
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ASR Contracts (fixed notional F )

The process is slightly different for fixed-notional ASR contracts.

How it works
• At time t = 0, the firms pays F to the bank.
• At time t = 0, the bank borrows Q shares from shareholders

and delivers them to the firm (e.g. Q = 0.8F/S0).
• The bank buys shares on the market.
• The bank chooses a date τ among a set of dates in [0,T ], to

exercise the option.
• At the exercise date τ , the bank delivers F

Aτ −Q shares to the
firm, where Aτ is the average price between 0 and τ .

Shares are sometimes delivered to the firm over [0, τ ] (not
borrowed) or at time τ : in that case, the ASR is not anymore
accelerated.
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and delivers them to the firm (e.g. Q = 0.8F/S0).
• The bank buys shares on the market.
• The bank chooses a date τ among a set of dates in [0,T ], to

exercise the option.
• At the exercise date τ , the bank delivers F

Aτ −Q shares to the
firm, where Aτ is the average price between 0 and τ .

Shares are sometimes delivered to the firm over [0, τ ] (not
borrowed) or at time τ : in that case, the ASR is not anymore
accelerated.



ASR Contracts

Nature of the problem
• An optimal execution problem (shares are bought on the

market by the bank) with usually huge nominal.
• An optimal stopping problem (Bermudan feature).
• An option pricing and hedging problem with Asian payoff.

All these problems must be solved at the same time.

Remark: we ignore interest rates, repo and all financing issues in
the model. This is why initial payments or initial delivery do not
matter.
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Setup of the model (fixed number of shares Q)

Discrete-time model
• δt = 1 day.
• n = 0 corresponds to t = 0.
• T = Nδt is the horizon of the ASR contract.

Dynamics I
• Q: number of shares to buy.
• Sn+1 = Sn + σ

√
δtεn+1: VWAP, with (εn)1≤n≤N i.i.d.

• An = 1
n
∑n

k=1 Sk : the average of daily VWAPs over the period
[0, nδt].

• qn+1 = qn + vnδt: the number of shares bought at time tn+1
(q0 = 0).
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Setup of the model (continued)

Moreover, we consider a market with temporary market impact:

Dynamics II: cash spent X0 = 0
Xn+1 = Xn + vnSn+1δt + L

( vn
Vn+1

)
Vn+1δt,

where:
• L : R→ R+ is strictly convex, increasing on R+, even,

asymptotically super-linear.
• (Vn)n is the market volume process, assumed to be

deterministic.
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Setup of the model (continued)

Stopping time
• N ⊂ {1, ...,N − 1} is the set of possible exercise times before

expiry (usually, N = {n0, . . . ,N − 1}).
• The exercise time n? is a stopping time taking value in
N ∪ {N}.

At and after the exercise time
• At time tn? , Q − qn? shares remain to be bought.
• The pure optimal execution problem after time n? is replaced

by a proxy:
(Q − qn?)Sn? + `(Q − qn?),

where ` is a penalty function (see BTP).
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Objective function

We consider an expected utility framework:

Maximization problem

sup
(v ,n?)∈A

E [− exp (−γ (QAn? − Xn? − (Q − qn?)Sn? − `(Q − qn?)))] ,

where γ is the absolute risk aversion of the bank.



Bellman characterization setup

The associated dynamic value function

un(x , q, S,A) = sup
(v ,n?)

E
[
− exp

(
−γ

(
QAn,A,S

n? − Xn,x ,v
n? − (Q − qn,q,v

n? )Sn,S
n? − `(Q − qn,q,v

n? )
))]

Finally, we define:

ũn,n+1(x , q, S,A) = sup
v∈R

E
[
un+1

(
Xn,x ,v

n+1 , q
n,q,v
n+1 , S

n,S
n+1,A

n,A,S
n+1

)]
.



Bellman characterization

Dynamic programming principle
• uN(X , q, S,A) =
− exp (−γ (QA− X − (Q − q)S − `(Q − q)))

• for n ∈ N ,

un(X , q,S,A) = max
{
ũn,n+1 (x , q,S,A) ,

− exp (−γ (QA− X − (Q − q)S − `(Q − q)))
}

• for n /∈ N and n 6= N:

un(X , q, S,A) = ũn,n+1 (X , q, S,A)



Main result

Proposition (Change of variables)
For n ≥ 1, un(x , q,S,A) can be written as

un(x , q,S,A) = − exp
(
−γ

(
Y − θn

(
q, S − A
σ
√
δt

)))
,

where Y = Q(A− S)− X + qS and θn(q,Z ) is equal to:

inf
(v ,n?)

1
γ
log
(
E
[
exp
(
γ

(
σ
√
δt

n?−1∑
j=n

( j
n?Q − qj

)
εj+1

−
(
1− n

n?
)
QZ

)
+

n?−1∑
j=n

L
(

vj
Vj+1

)
Vj+1δt + `(Q − qn?)

))])
.



Bellman equation for θn

Bellman equation for θn

• for n = N: θn(q,Z ) = `(Q − q),
• for n ∈ N : θn(q,Z ) = min

{
θ̃n,n+1(q,Z ), `(Q − q)

}
,

• for n /∈ N : θn(q,Z ) = θ̃n,n+1(q,Z ),

where θ̃n,n+1 is equal to:

inf
v∈R

1
γ
log
(
E
[
exp
(
γ

(
σ
√
δt
(( n

n + 1Q − q
)
εn+1 −

Q
n + 1Z

)

+ L
( v
Vn+1

)
Vn+1δt + θn+1

(
q + vδt, n

n + 1 (Z + εn+1)
)))])

.



Analysis of θn

Our change of variables can be interpreted easily. We recall that
θn(q,Z ) is equal to:

inf
(v ,n?)

1
γ
log
(
E
[
exp
(
γ

(
σ
√
δt
(n?−1∑

j=n

( j
n?Q − qj

)
εj+1︸ ︷︷ ︸

risk term

−
(
1− n

n?
)
QZ︸ ︷︷ ︸

Z term

)

+
n?−1∑
j=n

L
(

vj
Vj+1

)
Vj+1δt︸ ︷︷ ︸

liquidity term before exercise

+ `(Q − qn?)︸ ︷︷ ︸
liquidity and risk term after exercise

))])
.



Analysis of θn
The previous formula helps to understand the effects at stake:

The risk term
• The risk term measures the risk associated to a deviation from

a straight-line strategy.
• If the bank buys Q shares evenly until a given exercise date

(or until T ), then the risk is indeed perfectly hedged.
• But to benefit from the option contract, the bank will not

follow this strategy.

The Z-term
• If the price goes down, then there is an incentive to exercise

to benefit from the difference between A and S...
• ... but this incentive depends on q (see below).
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Analysis of θn

The ` term
• Before time n?, the execution process is partially hedged (this

is the risk term)
• After time n?, the execution process is not hedged (the risk is

in the `-term).
• Hence, there is an incentive to delay exercise if we have still a

large number of shares to buy.

The consequence is that when S goes down the bank should
accelerate the execution (buying) process, but not too much
(because of execution costs).
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large number of shares to buy.
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accelerate the execution (buying) process, but not too much
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Indifference price of ASR

One can easily prove that u0 does not depend on A and that:

u0(X = 0, q = 0, S0) = − exp
(
γ inf

v∈R

{
L
( v
V1

)
+ θ1(vδt, 0)

})
.

Hence, the amount of cash that makes the bank indifferent
between signing and not signing the ASR contract is:

Π = inf
v∈R

{
L
( v
V1

)
+ θ1(vδt, 0)

}
.

This is the indifference price.



Indifference price of ASR

The sign of the price Π is important:
• If Π is negative, it means that the gain associated to the

option is larger than the execution costs.
• If Π is positive, it means that the option does not compensate

execution costs.
In practice, deals occur only in the first case, and competition
between banks is through a discount/rebate on the average price A.
Remark: equations are different with a discount.



Discussion

Optimal strategy – optimal exercise time
• The optimal strategy only depends on q and Z
• Exercise if Zn ≤ Z exec

n (q).

Extensions
• We can add permanent market impact.
• We can add participation constraints.
• Continuous time trading strategy (see also another paper by

Jaimungal et al.).
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Numerical scheme

Tree method
We consider a pentanomial tree model for innovations (εn)n≥1:

εn =



+2 with probability 1
12

+1 with probability 1
6

0 with probability 1
2

−1 with probability 1
6

−2 with probability 1
12

These values for the distribution of εn are chosen to match the first
four moments of the standard normal distribution, i.e. we have:

E [εn] = 0, E
[
ε2n

]
= 1, E

[
ε3n

]
= 0, E

[
ε4n

]
= 3.
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Numerical scheme

• Each node of the tree corresponds to a couple (n,Z ) and we
associate an array for q to each node.

• The tree is not recombinant in the classical sense.
• However nZn +n(n− 1) is an integer between 0 and 2n(n− 1).
• Hence the tree has a number of nodes that is a cubic function

of N.



Reference case

• S0 = 45 €
• σ = 0.6 €·day−1/2, which corresponds to an annual volatility

approximately equal to 21%.
• T = 63 trading days
• V = 4 000 000 stocks· day−1

• Q = 20 000 000 stocks
• L(ρ) = η|ρ|1+φ with η = 0.1 €·stock−1 · day−1 and φ = 0.75
• γ = 2.5 · 10−7 €−1.
• `(q) corresponds to execution at participation rate 25% after

the exercise date.

The set of possible exercise dates is N = [22, 62] ∩ N.



Price trajectory and optimal strategy I
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Figure: Optimal Strategy when price goes up.



Price trajectory and optimal strategy I

In that case:
• Exercise at terminal time.
• Minimizing execution costs by trading almost in straight line.
• When S decreases, acceleration of the buying process.
• When S increases, the buying process slows down or even

turns into a selling process (for hedging purposes).



Price trajectory and optimal strategy II
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Price trajectory and optimal strategy II

In that case:
• Exercise almost as soon as possible (to benefit from A− S).
• As S is below A, acceleration of the buying process to buy a

lot before exercising.



Price trajectory and optimal strategy III
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Price trajectory and optimal strategy III

• The effects at stake are the same as above.
• The indifference price obtained is:
−10031490 = −1.11%QS0 < 0

• If we constrain the strategies to be buy-only strategies, we
get: −1.08%QS0 < 0



Price trajectory and optimal strategy III
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Effect of execution costs, case III
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Effect of execution costs

Utility indifference price of ASR contracts for different values of η:

η 0.01 0.1 0.2
Π

QS0
−1.18% −1.11% −1.05%

The less liquid the stock, the less round trips on the stock and the
less the bank can give back as a discount to the firm.



Effect of risk aversion, case I
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Effect of risk aversion

For risk aversion there are several effect at stake, and the shape of
strategies is not monotonic in γ. For instance, a high γ leads at
the same time to a curve closer to a straight line to hedge, and to
sharp increases in q to exercise with less to execute without hedge.

However, the influence of γ on the price is clear.
Utility indifference price of ASR contracts for different values of γ:

γ 0 2.5 · 10−9 2.5 · 10−7 2.5 · 10−6

Π
QS0

−1.39% −1.38% −1.18% −0.44%

The more risk averse, the less discount it will propose to the firm.
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The fixed notional case – Objective function

The maximization problem in the fixed notional case becomes:

Objective function

E
[
− exp

(
−γ

(
F − Xn? −

( F
An?
− qn?

)
Sn? − `

( F
An?
− qn?

)))]

• Going from 5 to 3 variables is now impossible, as (S,A)
cannot be reduced to S − A

• However, X can still be factored out.



The fixed notional case – Comments

• The above numerical method cannot be applied.
• We used a method with a tree for S, a grid for (q,A) at each

node... and interpolation with splines (for A) whenever
necessary.

• Perfect hedging with straight-line strategies do not exist
anymore.

• On all numerical examples: more profitable for the bank to
write fixed notional contract. Not as simple as convexity,
though...



Example - Case I
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Final remarks



Conclusion

• Optimal execution tools can be used beyond optimal
scheduling:

• Block trade pricing.
• Option hedging.
• The management of complex execution contracts with optional

features.

• Theoretical work remains to be done → e.g., non-linear PDEs.
• Other areas of quantitative finance can benefit from models à

la Almgren-Chriss...

Asset management, portfolio choice, portfolio transition.

Teasing for Lecture 3.
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End of Lecture 2

Thank you. Questions?



Lecture 3:
Asset management with

execution costs.



Introduction



Liquidity issues are everywhere

Lecture 1
I have introduced the Almgren-Chriss model:

• Initial Almgren-Chriss (quadratic) model in discrete time.
• Generalized Almgren-Chriss model in continuous time.
• Use of the Almgren-Chriss in the brokerage industry (IS, TC,

and POV orders).

Lecture 2
The use of the Almgren-Chriss model for pricing and hedging:

• Block trade pricing.
• Pricing and hedging of vanilla options (physical/cash

settlement).
• Pricing and hedging of Accelerated Share Repurchase (ASR)

contracts.



Liquidity issues are everywhere
Lecture 1
I have introduced the Almgren-Chriss model:

• Initial Almgren-Chriss (quadratic) model in discrete time.
• Generalized Almgren-Chriss model in continuous time.
• Use of the Almgren-Chriss in the brokerage industry (IS, TC,

and POV orders).

Lecture 2
The use of the Almgren-Chriss model for pricing and hedging:

• Block trade pricing.
• Pricing and hedging of vanilla options (physical/cash

settlement).
• Pricing and hedging of Accelerated Share Repurchase (ASR)

contracts.



Liquidity issues are everywhere
Lecture 1
I have introduced the Almgren-Chriss model:

• Initial Almgren-Chriss (quadratic) model in discrete time.
• Generalized Almgren-Chriss model in continuous time.
• Use of the Almgren-Chriss in the brokerage industry (IS, TC,

and POV orders).

Lecture 2
The use of the Almgren-Chriss model for pricing and hedging:

• Block trade pricing.
• Pricing and hedging of vanilla options (physical/cash

settlement).
• Pricing and hedging of Accelerated Share Repurchase (ASR)

contracts.



Liquidity issues are everywhere
Other domains of finance are concerned with liquidity issues:

• Risk management.
• Market making.
• Asset management – return / risk (volatility, skew, kurtosis)

+ liquidity.

Lecture 3
• Portfolio choice and asset management with execution costs.
• Bayesian learning (on the drift) + stochastic optimal control.

Mixing learning and optimal control is a (trendy) idea that goes
beyond financial applications.

Most of the original content of today’s lecture is in the paper
“Portfolio choice under drift uncertainty: a Bayesian learning and
stochastic optimal control approach” by OG and J. Pu.
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Asset management and portfolio choice:
reminders



A bit of history

• Markowitz and its efficient frontier.
• Tobin and the separation theorem.
• Sharpe and others with the CAPM.
• Merton’s problem (with and without consumption).
→ Dynamic portfolio choice.

• APT + Fama-French.
• Black-Litterman (Markowitz + CAPM).
• ...

We will focus on Merton’s problem without consumption.
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Classical problem with 2 assets

2 assets
• Risk-free asset. Interest rate r .
• Risky asset:

dSt = µStdt + σStdWt , σ > 0.

Portfolio dynamics

dVt = ((µ− r) θtVt + rVt) dt + σθtVtdWt

= ((µ− r)Mt + rVt) dt + σMtdWt

• θ: proportion of the portfolio invested in the risky asset.
• M: amount invested in the risky asset.
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Classical problem with 2 assets

Objective function

sup
θ∈A

E
[
U
(
V 0,V0,θ

T

)]
,

where A is the set of admissible strategies (see paper).

Two important cases
• CARA: U(V ) = − exp(−γV )
• CRRA:

U (V ) =


V 1−γ

1− γ if γ 6= 1,

log (V ) if γ = 1.
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The PDE approach

Value function

v (t,V ) = sup
θ∈At

E
[
U
(
V t,V ,θ

T

)]
.

HJB equation

−∂tu (t,V )− sup
θ

{
((µ− r) θ + r)V ∂V u (t,V )

+1
2σ

2θ2V 2∂2
VV u (t,V )

}
= 0,

with terminal condition

u (T ,V ) = U (V ) .
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CRRA case

Ansatz

u (t,V ) =

(
er(T−t)V

)1−γ

1− γ exp(g(t)).

Equation for g
The HJB equation becomes:

g ′(t) + (1− γ) sup
θ

(
(µ− r)θ − 1

2γσ
2θ2
)

= 0, g(T ) = 0.
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Solution of the HJB equation
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.

Optimizer

θ? = µ− r
γσ2

The verification approach leads to u = v and θ? is optimal among
L2 adapted processes with linear growth in W .
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The dual/martingale approach



Martingale approach – Principle I

Introduction of a martingale measure Q
dQ
dP = ZT = e−

µ−r
σ

WT− 1
2σ2 (µ−r)2T ,

WQ
t = Wt + µ− r

σ
,

such that

dSt = rStdt + σStdWQ
t .

dVt = rVt + σθVtdWQ
t .



Martingale approach – Principle II

Concavity of U

E
[
U
(
V 0,V0,θ

T

)]
≤ E

[
U
(
V 0,V0,θ?

T

)]
+E

[
U ′
(
V 0,V0,θ?

T

)
(V 0,V0,θ

T − V 0,V0,θ?

T )
]

≤ E
[
U
(
V 0,V0,θ?

T

)]
+EQ

[ 1
ZT

U ′
(
V 0,V0,θ?

T

)
(V 0,V0,θ

T − V 0,V0,θ?

T )
]
.

If U ′(V 0,V0,θ?

T ) = cZT e−rT , then θ? is optimal!
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Martingale approach – Identification I

Choice of c
We want

V 0,V0,θ?

T = U ′−1 (cZT e−rT
)

and so
V0 = e−rTEQ

[
U ′−1 (cZT e−rT

)]
.

This defines c (when a solution exists).



Martingale approach – Identification II

Finding θ?
By definition

V 0,V0,θ?

t = e−r(T−t)EQ
[
U ′−1 (cZT e−rT

)
|Ft
]
.

and
dV 0,V0,θ?

t = rV 0,V0,θ?

t dt + σθ?V 0,V0,θ?

t dWQ
t

θ? can be identified:
• (theoretically) by the martingale representation theorem,
• (practically) by computing the above expected value (if

U ′−1 permits it) and applying Ito’s formula.
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Remarks

Advantages and drawbacks
• The martingale method can be used for a large class of utility

functions U.
• The martingale method requires to have... martingales (not

the case with transaction costs for instance).

Last remark: in both cases, we can easily generalize to d > 1 risky
assets.



Remarks

Advantages and drawbacks
• The martingale method can be used for a large class of utility

functions U.
• The martingale method requires to have... martingales (not

the case with transaction costs for instance).

Last remark: in both cases, we can easily generalize to d > 1 risky
assets.



Appendix: Gaussian prices



Gaussian prices instead of Gaussian returns

2 assets
• Risk-free asset. No interest (to simplify).
• Risky asset:

dSt = µdt + σdWt , σ > 0.

Portfolio dynamics

dVt = µNtdt + σNtdWt ,

where Nt is the number of shares in the portfolio at date t.
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Gaussian prices instead of Gaussian returns

Objective function

sup
N∈A

E
[
− exp

(
−γV 0,V0,N

T

)]
,

where A is the set of admissible strategies.

Value function

v (t,V ) = sup
N∈At

E
[
− exp
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−γV t,V ,N
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Gaussian prices instead of Gaussian returns

HJB equation

−∂tu (t,V )− sup
N

{
µN∂V u (t,V ) + 1

2σ
2N2∂2

VV u (t,V )
}

= 0,

with terminal condition

u (T ,V ) = − exp(−γV ).



Change of variables

Ansatz

u (t,V ) = − exp [−γ (V + g(t))] .

Equation for g
The HJB equation becomes:

g ′(t) + sup
N

(
µN − 1

2γσ
2N2

)
= 0, g(T ) = 0



Change of variables
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The HJB equation becomes:

g ′(t) + sup
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2γσ
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Solution

Solution of the HJB equation

u (t,V ) = − exp
[
−γ

(
V + 1

2γσ2 (T − t)µ2
)]

.

Optimizer

N? = µ

γσ2 .
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Mixing Almgren-Chriss and Merton’s problem



Mixing Almgren-Chriss and Merton
Almgren-Chriss framework

• Time: t.
• Number of shares: qt = q0 +

´ t
0 vsds.

• Price: dSt = µdt + σdWt .
• Cash: dXt = −vtStdt − VtL

(
vt
Vt

)
dt, X0 = 0.

Optimization problem

sup
(vt )t∈A

E [− exp(−γ(XT + qTST − `(qT )))] , T fixed

A =
{

(vt)t∈[0,T ] prog mes ,
ˆ T

0
|vt |dt ∈ L∞

}

Remark: L satisfies the same assumptions as in Lecture 1 and ` is
convex.
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HJB and HJ equations



HJB Equation

The HJB equation associated with this stochastic optimal control
problem is:

HJB equation

0 = ∂tu+µ∂Su+1
2σ

2∂2
SSu+sup

v∈R

{
v∂qu+

(
−vS − L

( v
Vt

)
Vt

)
∂xu

}
with terminal condition:

u(T , x , q,S) = − exp(−γ(x + qS − `(q)))



Change of variables

Ansatz

u(t, x , q, S) = − exp (−γ (x + qS − θ(t, q)))

The PDE satisfied by θ is the following:

PDE

∂tθ − µq + 1
2γσ

2q2 − VtH(∂qθ) = 0

with θ(T , q) = `(q).

Optimal control

v?(t, q) = VtH ′(−∂qθ(t, q))
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Optimal control
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Variational problem



Towards a variational problem
Expression of XT

XT + qTST − `(qT )

= X0 +q0S0 +µ

ˆ T

0
qt +σ

ˆ T

0
qtdWt−

ˆ T

0
VtL

( vt
Vt

)
dt−`(qT ).

By taking the Laplace transform (for v deterministic – using the
same trick as for the AC model), the problem boils down to the
following minimization problem:

Minimization problem

inf
q∈W 1,1(0,T ),q(0)=q0

I(q),

where

I(q) =
ˆ T

0

(
VsL

( q̇(s)
Vs

)
− µq(s) + 1

2γσ
2q2(s)

)
ds + `(q(T )).
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Variational approach

Theorem (Existence and uniqueness of a minimizer)
There exists a unique minimizer q ∈ {q ∈W 1,1(0,T ), q(0) = q0}
of I.

The problem can be solved using Euler-Lagrange equations or
Hamiltonian equations.

Hamiltonian characterization
{

ṗ(t) = −µ+ γσ2q(t)
q̇(t) = VtH ′(p(t)) q(0) = q0, p(T ) = −`′(q(T )).



Variational approach

Theorem (Existence and uniqueness of a minimizer)
There exists a unique minimizer q ∈ {q ∈W 1,1(0,T ), q(0) = q0}
of I.

The problem can be solved using Euler-Lagrange equations or
Hamiltonian equations.

Hamiltonian characterization
{

ṗ(t) = −µ+ γσ2q(t)
q̇(t) = VtH ′(p(t)) q(0) = q0, p(T ) = −`′(q(T )).



Remarks

• The system can only be solved numerically in general.
• It is interesting to see that the steady state corresponds to

q = µ

γσ2 .

• The system can be solved in closed form in the original
(quadratic) Almgren-Chriss setting:

L(ρ) = ηρ2, H(p) = p2

4η ,

`(q) = 1
2Kq

2, Vt = V .



Equation in the quadratic case

Elliptic equation
The problem boils down to an elliptic equation:

q′′(t)− γσ2V
2η︸ ︷︷ ︸

=α2

q(t) = −µV2η ,

with boundary conditions

q(0) = q0, q′(T ) = −KV
2η q(T ).



Solution in the quadratic case

Solution

q(t) = µ

γσ2 +
(
q0 −

µ

γσ2

)
cosh(αt) + B sinh(αt),

where

B = −
α
(
q0 − µ

γσ2

)
sinh(αt) + KV

2η
µ
γσ2 + KV

2η

(
q0 − µ

γσ2

)
cosh(αT )

α cosh(αT ) + KV
2η sinh(αT )

.



Examples

• µ = 0.01 e·day−1.
• σ = 0.6 e·day−1/2.
• T = 10 days.
• V = 4 000 000 shares·day−1.
• L(ρ) = η|ρ|2 with η = 0.15 e ·shares−1 · day−1.
• γ = 2 · 10−7e−1.



Examples

Figure: Optimal strategies for `(q) = 0 and `(q) = 5 · 10−8q2.



Remarks

• Final penalty may not be the right way to penalize illiquidity.
• A running penalty has the same effect as increasing risk

aversion or volatility.

• Possibility to consider portfolio transition:

{
ṗ(t) = −µ+ γσ2q(t)
q̇(t) = VtH ′(p(t)) q(0) = q0,

and
q(T ) = qtarget (portfolio transition problem)

or

p(T ) = −K (q(T )−qtarget) (relaxed portfolio transition problem).
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Generalization

The problem can be generalized to a multi-asset portfolio (as the
initial Almgren-Chriss model). In that case:

Hamiltonian characterization
{

ṗ(t) = −µ+ γΣq(t)
q̇i (t) = V i

t H i ′(pi (t)), ∀i q(0) = q0, p(T ) = −∇`(q(T )),



Learning meets optimal control



Introduction



Stochastic optimal control

Stochastic optimal control is often used in finance for solving
dynamic optimization problems.

Tools
• Dynamic programming principle.
• Hamilton-Jacobi-Bellman equation (PDE).
• Dual martingale methods.

Most common applications
• Portfolio choice / Asset management.
• Super-replication.
• Optimal execution.
• Market making strategies.



Stochastic optimal control

Stochastic optimal control is often used in finance for solving
dynamic optimization problems.

Tools
• Dynamic programming principle.
• Hamilton-Jacobi-Bellman equation (PDE).
• Dual martingale methods.

Most common applications
• Portfolio choice / Asset management.
• Super-replication.
• Optimal execution.
• Market making strategies.



Bayesian learning

Bayesian learning
• Unknown parameter(s) → prior belief / prior distribution.
• Bayes’ rule to update belief as information becomes available.
• Conjugate priors help a lot.

Bayesian learning is a forward process whereas stochastic optimal
control is based on a backward reasoning.

→ What happens when we learn and anticipate we will go on
learning?
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Bayesian learning

Bayesian learning
• Unknown parameter(s) → prior belief / prior distribution.
• Bayes’ rule to update belief as information becomes available.
• Conjugate priors help a lot.

Bayesian learning is a forward process whereas stochastic optimal
control is based on a backward reasoning.

→ What happens when we learn and anticipate we will go on
learning?



Is it a new idea?

People have always learnt and controlled at the same time...
but they seldom anticipated the fact that they learn: they are
often time-inconsistent!

Explore vs. exploit
• Very common in many fields where there is an explore/exploit

trade-off.
• Typical of problems modeled by bandits (digital advertising).
→ Bayesian bandit model.

• But, often “solved” with heuristics (no control).

What about finance?
Portfolio management with uncertain drift (Karatzas and Zhao).
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The classical Merton’s problem with learning
Martingale methods vs. PDE



Problem with 2 assets

2 assets
• Risk-free asset. Interest rate r .
• Risky asset:

dSt = µStdt + σStdWt , σ > 0,

with µ unknown.
Prior distribution on µ: mes(dµ).

Portfolio dynamics

dVt = ((µ− r) θtVt + rVt) dt + σθtVtdWt

= ((µ− r)Mt + rVt) dt + σMtdWt
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Objective function

sup
θ∈A

E
[
U
(
V 0,V0,θ

T

)]
,

where A is the set of admissible strategies (see paper).

Strategies must be adapted to FS .

Two approaches
• Karatzas and Zhao: martingale method (article from 98, not

much known)
• Guéant and Pu: PDE method with conjugate priors. Can be

generalized to non-martingale frameworks.
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Martingale method

Introduction of martingale measure Q
dQ
dP = ZT = e−

µ−r
σ

WT− 1
2σ2 (µ−r)2T ,

WQ
t = Wt + µ− r

σ
,

such that

dSt = rStdt + σStdWQ
t .

dVt = rVt + σθVtdWQ
t .

Warning: ZT is not FS
T -measurable. But WQ is FS-adapted.
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T ] , then θ

? is optimal!
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Karatzas and Zhao results

Next steps
• EQ

[
1/ZT |FS

T

]
must be computed:
ˆ
R
e

x−r
σ

WQ
T −

1
2σ2 (x−r)2Tmes(dx).

• Identification of c as above.
• Identification of θ? as above.

Advantages and drawbacks
• mes(dµ) can be very general.
• U is general.
• (Very) painful computations.
• Requires martingales.
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Bayesian learning
We consider a conjugate (Gaussian) prior for µ:

Bayesian prior on µ

µ ∼ N (β0, ν
2
0)

Observing the evolution of S enables to update the prior belief.

Dynamics of the beliefs

µ ∼ N (βt , ν
2
t )

and Bayes’ rule gives:

ν2
t = σ2ν2

0
σ2 + ν2

0 t

dβt = g(t)
(dSt

St
− βtdt

)
, g(t) = ν2

0
σ2 + ν2

0 t
.
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Portfolio dynamics

We introduce a new (FS-adapted) Brownian motion:

Ŵt = Wt +
ˆ t

0

µ− βs
σ

ds.

Dynamics of state variables

dVt = ((βt − r) θtVt + rVt) dt + σθtVtdŴt

= ((βt − r)Mt + rVt) dt + σMtdŴt .

dβt = σg(t)dŴt .

→ β is a new state variable.
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dβt = σg(t)dŴt .
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Value function and HJB equation

Value function

v (t,V , β) = sup
θ∈At

E
[
U
(
V t,V ,β,θ

T

)]

HJB equation

−∂tu (t,V , β)− 1
2σ

2g2 (t) ∂2
ββu (t,V , β)

− sup
θ

{
((β − r) θ + r) V∂V u (t,V , β)

+1
2σ

2θ2V 2∂2
VV u (t,V , β) + σ2g (t) θV∂2

Vβu (t,V , β)
}

= 0,

with terminal condition

u (T ,V , β) = U (V ) .
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Solution in the CARA case

Ansatz

u (t,V , β) = − exp
[
−γ

(
er(T−t)V + ϕ (t, β)

)]
.

Equation for ϕ: a linear PDE!

−∂tϕ (t, β)− 1
2σ

2g2 (t) ∂2
ββϕ (t, β)

−(β − r)2

2γσ2 + g (t) (β − r) ∂βϕ (t, β) = 0,

with terminal condition

ϕ (T , β) = 0.
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Solution in the CARA case
Optimizer

M? = e−r(T−t)
((β − r)

γσ2 − g (t) ∂βϕ (t, β)
)
.

Solution ϕ

ϕ (t, β) = a (t) + 1
2b (t) (β − r)2


a′ (t) + 1

2σ
2g2 (t) b (t) = 0

b′ (t) + 1
γσ2 − 2g (t) b (t) = 0.

with terminal condition a(T ) = b(T ) = 0.
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Solution in the CARA case

Solutions a and b

a (t) = 1
2γ

(
log g (t)

g (T ) − (T − t) g (T )
)

b (t) = 1
γσ2 (T − t) g (T )

g (t)

Optimizer

M?
t = e−r(T−t) g (T )

g (t)
βt − r
γσ2 .

The verification approach works for L2 adapted processes M with
linear growth in Ŵ .
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Comments

The optimizer is

M?
t = e−r(T−t) g (T )

g (t)
βt − r
γσ2 .

If µ was known, then

M?
t,µ known = e−r(T−t)µ− r

γσ2 .

The naive strategy

Mt,naive = e−r(T−t)βt − r
γσ2

is suboptimal because we learn AND we know that we will learn!
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Solution in the CRRA case

Ansatz

u (t,V , β) =

(
er(T−t)V

)1−γ

1− γ exp [ϕ (t, β)] .

Equation for ϕ: a nonlinear PDE

− 1
1− γ ∂tϕ (t, β)− 1

2 (1− γ)σ
2g2 (t) ∂2

ββϕ (t, β)

− 1
2γ (1− γ)σ

2g2 (t) (∂βϕ (t, β))2− 1
γ

(β − r)2

2σ2 − 1
γ

g (t) (β − r) ∂βϕ (t, β) = 0,

with terminal condition
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with terminal condition a(T ) = b(T ) = 0.
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Solutions a and b
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σ2
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g (t)

g (t)− g (T )
(γ − 1) g (t) + g (T ) .

The solution is defined on [0,T ] if γ ≥ 1 but there is a blow up in
finite time if γ < 1.
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Optimizer in the CRRA case

Optimizer

θ?t = βt − r
γσ2

γg (T )
(γ − 1) g (t) + g (T ) .

• If γ > 1, then the learning-anticipation effect is the same as in
the CARA case.

• For γ = 1, there is no learning-anticipation effect.
• If γ < 1, the effect is more complex, because there is a blow

up.
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Optimizer
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γσ2
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• If γ > 1, then the learning-anticipation effect is the same as in
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Remarks

• All the formulas can be extended to the case of d > 1 risky
assets (see next slide).

• Two important ideas:
• Extension of the state space (not always necessary).
• Markovian dynamics thanks to conjugate priors.

• The PDE method can be used in many models.



Multi-asset extension

Main changes:
• σ is replaced by a covariance matrix Σ.
• µ ∼ N (β0, Γ0).

Bayes’ rule gives:

Γt =
(

Γ−1
0 + tΣ−1

)−1

dβt = ΓtΣ−1 (µ− βt) dt + ΓtΣ−1 (σ � dWt)



Multi-asset extension

Optimum
• CARA case:

M? = e−r(T−t) 1
γ

Σ−1ΓT Γ−1
t

(
β − r~1

)
.

• CRRA case:

θ? = Σ−1
(

Γ−1
t + (γ − 1) Γ−1

T

)−1
Γ−1

t

(
β − r~1

)
.



What about the Almgren-Chriss framework?



Mixing Almgren-Chriss and Merton (with learning)

Almgren-Chriss framework
• Time: t.
• Number of shares: qt = q0 +

´ t
0 vsds.

• Price: dSt = µdt + σdWt , µ unknown.

• Cash: dXt = −vtStdt − VtL
(

vt
Vt

)
dt, X0 = 0.

Optimization problem

sup
(vt )t∈A

E [− exp(−γ(XT + qTST − `(qT )))] , T fixed
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Bayesian learning

Bayesian prior on µ

µ ∼ N (β0, ν0)

Observing the evolution of S enables to update the prior belief.

Dynamics of the beliefs

µ ∼ N (βt , νt)

and Bayes’ rule gives:

ν2
t = σ2ν2

0
σ2 + ν2

0 t

dβt = g(t)(dSt − βtdt), g(t) = ν2
0

σ2 + ν2
0 t
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A new Brownian motion

Brownian motion adapted to the filtration of observables

Ŵt = Wt +
ˆ t

0

µ− βs
σ

ds

Dynamics of the state variables
• Number of shares: qt = q0 +

´ t
0 vsds

• Price: dSt = βtdt + σdŴt

• Cash: dXt = −vtStdt − VtL
(

vt
Vt

)
dt

• Belief: dβt = σg(t)dŴt
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HJB Equation
The HJB equation associated with the extended stochastic optimal
control problem is:

HJB equation

0 = ∂tu + β∂Su + sup
v∈R

{
v∂qu +

(
−vS − L

( v
Vt

)
Vt

)
∂xu

}

+1
2σ

2∂2
SSu + 1

2σ
2g(t)2∂2

ββu + σ2g(t)∂2
βSu

with terminal condition:

u(T , x , q, S, β) = − exp(−γ(x + qS − `(q)))

We control and we learn, but we control knowing that we
shall continue to learn.
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Change of variables
We use the following ansatz:

Definition
We introduce θ by:

u(t, x , q,S) = − exp (−γ (x + qS − θ(t, q, β)))

PDE

0 = ∂tθ − βq + 1
2γσ

2q2 − VtH(∂qθ)

+1
2σ

2g(t)2(∂2
ββθ + γ(∂βθ)2)− γσ2g(t)q∂βθ

with θ(T , q, β) = `(q).

v?(t, q, β) = −VtH ′(∂qθ(t, q, β)).
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Quadratic case – Portfolio choice
If L(ρ) = ηρ2 and `(q) = 1

2Kq
2, then a natural ansatz is

θ(t, q, β) = a(t) + 1
2b(t)β2 + c(t)βq + 1

2d(t)q2

The PDE boils down to a system of ODEs:

ODEs

a′ = −1
2σ

2g2b, a(T ) = 0

b′ = −γσ2g2b2 + V
2η c

2, b(T ) = 0

c ′ = 1− γσ2g2bc + γσ2gb + V
2η cd , c(T ) = 0

d ′ = −γσ2 − γσ2g2c2 + 2γσ2gc + V
2ηd

2, d(T ) = K
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Quadratic case – Portfolio transition (relaxed)
If L(ρ) = ηρ2 and `(q) = 1

2 K(q − qtarget)2, then a natural ansatz is

θ(t, q, β) = a(t) + 1
2b(t)β2 + c(t)βq + 1

2d(t)q2 + e(t)β + f (t)q

The PDE boils down to a system of ODEs

a′ = −1
2σ

2g2b − 1
2γσ

2g2e2 + V
4η f 2, a(T ) = 1

2Kq2
target

b′ = −γσ2g2b2 + V
2η c2, b(T ) = 0

c ′ = 1− γσ2g2bc + γσ2gb + V
2η cd , c(T ) = 0

d ′ = −γσ2 − γσ2g2c2 + 2γσ2gc + V
2η d2, d(T ) = K

e′ = −γσ2g2be + V
2η cf , e(T ) = 0

f ′ = −γσ2g2ce + γσ2ge + V
2η df , f (T ) = −Kqtarget
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Examples

• S0 = 50 e
• µ = 0.01 e·day−1.
• σ = 0.6 e·day−1/2.
• T = 10 days.
• V = 4 000 000 shares·day−1.
• L(ρ) = η|ρ|2 with η = 0.15 e ·shares−1 · day−1.
• γ = 2 · 10−7e−1.
• β0 = 0.01 e·day−1.
• ν0 = 0.03 e·day−1.



Examples

Figure: Optimal strategies for `(q) = 0.

A way to do trend following!



Concluding remarks

Control and learning
• Learning taken into account by a new state variable (not

really new, because we can take S).
• Different from plugging recently estimated values (we know

that we will learn).
• Less powerful than martingale methods (Karatzas-Zhao) but

larger scope for applications (Almgren-Chriss).
• Many applications outside of Finance.
→ Main ingredient: conjugate distributions!



End of Lecture 3

Thank you. Questions?


