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Abstract

In this paper, we provide a mathematical framework for the rigorous pricing and risk man-

agement of performance-based programmatic ad-buying contracts. We mainly focus on the

case of Real-Time Bidding (RTB) audience strategies, where ad inventory is purchased algo-

rithmically through the participation to a large number of Vickrey auctions. Our approach

is based on stochastic optimal control techniques. It is a general approach in that it makes

it possible to consider a broad range of practical situations. In addition to the pricing of

ad-buying contracts, we obtain results on both the optimal bidding strategy and the risk

associated with each contract, the latter being obtained thanks to Monte Carlo simulations.

Besides the mathematical framework itself, our goal is to show that mathematical and nu-

merical tools exist for giving a fair price to performance-based ad-buying contracts � that

are too rare in the industry, as of today � and to assess and manage the associated risk.

Keywords: Real-Time Bidding, Stochastic optimal control, Pricing, Risk management,

Performance-based contracts, Monte Carlo simulations.

1 Introduction

Recent evolutions in technology have led to considerable changes in the advertising industry.

An important example of these changes is in the way ad impressions (in short, the right to

communicate a message to a potential customer) are purchased. Nowadays, a large part of
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the ad inventory on di�erent platforms (display, mobile, TV, etc.) is purchased by com-

panies � often through intermediaries, such as media-buying agencies � in a programmatic

way. An example of this is Real-Time Bidding (RTB): advertisers can buy impressions in

real-time by participating to auctions organized on market platforms called ad exchanges.

Ad exchanges allow companies to target speci�c audiences at the right time and in the right

context, thus expecting a better return-on-investment than in the case of direct buys, i.e.

when impressions are purchased in bulk and over-the-counter.

In practice, the companies willing to advertise their products seldom set up by themselves

algorithms for RTB. Instead, they rely on intermediaries providing the expertise, the quan-

titative methodologies, and the technological layers in order to access ad exchanges and

implement optimal strategies and tactics. These intermediaries are often media agencies �

whose scope and ability to optimize campaigns go far beyond digital advertising and RTB �,

media trading desks, demand-side platforms (DSPs), or a combination of them.

One of the central questions at the interface between the technological evolutions, such as

RTB, and the business models of the advertising industry, is the following:

�How media buying services should be priced?� .

Nowadays, the pricing of ad-buying services is quite rudimentary. Budgets are globally

chosen and split among di�erent media, devices, audience targets, etc. Algorithms are then

used to maximize the performance of advertising campaigns � measured by various key per-

formance indicators (KPI) �, but the price eventually paid by the company advertising its

products is almost always independent of the actual performance. In other words, the pric-

ing and the execution processes are seldom interrelated. In particular, there is no measure

or control of the risk of not meeting the expected benchmarks.

Some companies willing to communicate on their products, along with many participants

in the advertising industry, have recently shown an interest for alternative pricing mod-

els: performance-based pricing models. Instead of spending a given budget on a strategy

designed to maximize/minimize one or several KPIs, the company willing to advertise its

products could pay the intermediary (the media agency or the trading desk) a price de�ned

as a function of the performance of the campaign � for instance, as a function of the number

of impressions, the number of clicks � linked to the cost-per-click (CPC) �, the number of

acquisitions � linked to the cost-per-acquisition (CPA) �, etc.

Going from the current business environment to a new one where performance-based con-

tracts account for a large part of the turnover will be a challenge for the whole industry:

quantitative models will be more and more required, smarter and smarter risk management

procedures will be needed, algorithms will need to be constantly improved, and not only to

optimize average criteria. It is clear therefore that the media-buying industry has a lot to

learn from the methods used in the �nancial industry (especially in the pricing of contingent

claims and in risk management).
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The goal of this article is to put forward a �rst mathematical framework for tackling the

pricing problem associated with programmatic performance-based ad-buying services (in

particular RTB), and for computing the optimal strategy to reach a desired level of per-

formance. Our approach is interesting both for companies (it allows to have a transparent

framework to quantify the value of ad-buying services) and for the ad trading desks of media

agencies, as it allows to de�ne the optimal strategy and control the associated risk. It will

de�nitely serve as a stepping stone for more sophisticated mathematical models.

The academic literature on pricing issues in the context of programmatic advertising is quite

scarce (e.g. [1, 3, 5]). The current literature fails in fact to provide a simple mathematical

framework which is consistent from the auction level to the pricing of the whole strategy.

Early attempts on mathematical optimization models for RTB optimization are [7, 8]. One

of the �rst works to give an in-depth mathematical modeling of RTB can be found in [9]

(to which this article and [10] are companion papers), but the focus is on strategies and not

on pricing. In this paper, we consider a model close to the one presented in [9] (statistical

modeling of RTB auctions and optimization through stochastic optimal control techniques),

but we focus on the pricing of ad services and on the business consequences of the use of

performance-based contracts.

In Section 2, we present the model and introduce the notations used throughout the pa-

per. We also provide a general de�nition of performance-based contracts, and we present

the indi�erence pricing approach considered in the paper. In Section 3, we show how the

problem can be solved in the case of a risk-neutral intermediary, and we present two numer-

ical examples. Thanks to Monte Carlo simulations, we also show the risk associated with

performance-based contracts. In Section 4, we solve the problem in the case of a risk-averse

intermediary with a constant absolute risk aversion coe�cient. Two numerical examples are

then discussed in the risk-averse case.

2 Notations, general de�nitions and model setup

2.1 Performance-based contracts

We consider an ad trader1 connected to one or several ad exchanges. He receives requests

to participate in auctions in order to purchase inventory and display some banners to the

speci�c audiences he wants to target. The ad trader can controls its bid level for each

auction he participates in. We assume that there are J ≥ 1 di�erent types (or sources) of

inventories; either di�erent segments of the audience, di�erent ad formats, or di�erent ad

exchanges. From a practical perspective, the idea is to assume that each source of inventory

represents an homogeneous audience (in terms of the information available to value the ad

inventory).

1In practice, the ad trader should not be a human but rather an algorithm.
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In this paper, we consider performance-based contracts between the advertiser and the in-

termediary. With such contracts, the price paid by the advertiser depends on the value of

one or several KPIs at the end of the trading period or at the end of the whole campaign.

These KPIs can be the number of impressions purchased,2 the number of clicks, or the num-

ber of acquisitions of a product (following a click on a banner).3 In this paper, we regard

each click and/or each acquisition as a �conversion�: when a banner is displayed, there may

or may not be a conversion into something (a click or an acquisition) showing some form of

interest of the (web) user for the product or for the brand.

Throughout the article, contracts are de�ned for a period of time [0, T ]. We denote by IjT ,

for j ∈ {1, . . . , J}, the number of impressions at the end of the period for the source j. In

the same way, we denote by CjT , for j ∈ {1, . . . , J}, the number of conversions at the end
of the period for the source j. In this article, the payo� of performance-based contracts is

a function of the tuple (I1T , . . . , I
J
T , C

1
T , . . . , C

J
T ).

From a �nancial perspective, the contracts work as follows:

• At time t = 0, the company willing to advertise its products (hereafter, the advertiser),

pays a price P (upfront payment) to the intermediary (media agency, trading desk,

ad trader, etc).

• Between time t = 0 and time t = T , the intermediary uses algorithms to buy ad

inventory.

• At time t = T , the campaign associated with the contract is over and there is a �nal

payment/payo� (positive or nonpositive) from the advertiser to the intermediary of

the form

g(I1T , . . . , I
J
T , C

1
T , . . . , C

J
T ),

where the function g : N2J → R is a priori nondecreasing with respect to each coordi-

nate.

This de�nition is very general. Several speci�c cases are particularly relevant, and will be

considered as special cases throughout this paper:

1. Contracts with a target number of impressions I. In that case, a natural payo�

function is:

g(i1, . . . , iJ , c1, . . . , cJ) = −πI(i1 + . . .+ iJ − I)−, πI > 0.

If the ad trader reaches the target number of impressions, then nothing happens. Oth-

erwise, he has to compensate the advertiser for the impressions that have not been

purchased: he pays πI for each impression missing to reach the target.

2This is eventually related to the average cost per (thousand of) impressions, or cost-per-mille (CPM).
3The KPIs used in practice are the CPC (cost per click) and the CPA (cost per acquisition).
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More generally, one can consider a payo� function of the form

g(i1, . . . , iJ , c1, . . . , cJ) = gI(i
1 + . . .+ iJ).

2. Contracts with a target number of conversions C. In that case, a natural payo�

function is:

g(i1, . . . , iJ , c1, . . . , cJ) = −πC(c1 + . . .+ cJ − C)−, πC > 0.

If the ad trader reaches the target number of conversions, then nothing happens. Oth-

erwise, he has to compensate the advertiser for the conversions that have not been

obtained: he pays πC for each conversion missing to reach the target.

More generally, one can consider a payo� function of the form

g(i1, . . . , iJ , c1, . . . , cJ) = gC(c1 + . . .+ cJ).

3. Contracts with both a target number of impressions and a target number of conver-

sions. In that case, the payo� function is of the form:

g(i1, . . . , iJ , c1, . . . , cJ) = gI(i
1 + . . .+ iJ) + gC(c1 + . . .+ cJ).

4. Contracts with payo�s depending on the di�erent types of inventories and conversions.

In that case, the payo� function is of the form:

g(i1, . . . , iJ , c1, . . . , cJ) = g1I (i
1) + . . .+ gJI (iJ) + g1C(c1) + . . .+ gJC(cJ).

For technical reasons, we hereafter assume that g has at most linear growth at in�nity, i.e.

there exists κ such that

|g(i1, . . . , iJ , c1, . . . , cJ)| ≤ κ
(
1 + i1 + . . .+ iJ + c1 + . . .+ cJ

)
.

2.2 Setup of the model

In order to quantitatively de�ne the optimal strategy for the ad trader, and then give a price

to a given performance-based contract, we need to model the underlying auction process

and its outcomes. For that purpose, we consider a probability space (Ω,F ,P) equipped

with a �ltration (Ft)t∈R+ satisfying the usual conditions. We assume that all stochastic

processes are de�ned on (Ω,F , (Ft)t∈R+ ,P).

2.2.1 Auctions

Auction requests are modeled with J marked Poisson processes: the arrival of requests from

the source j ∈ {1, . . . , J} is triggered by the jumps of the Poisson process (N j
t )t with in-

tensity λj > 0, and the marks (pjn, ξ
j
n)n∈N∗ correspond, for each auction request sent by the
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source j, to the highest bid pj sent by another participant (i.e. the price to beat in order to

win the auction), and to the occurrence ξj ∈ {0, 1} of a conversion related to the underlying

unit of inventory purchased.

Every time the ad trader receives from the source j a request to participate in an auction

(the source is known), the ad trader can bid a price: at time t, if he receives a request from

the source j, we denote his bid by bjt . We assume that for each j ∈ {1, . . . , J}, the process
(bjt )t is a predictable process with values in R+ ∪ {+∞}. In particular, we assume that the

ad trader stands ready to bid (possibly a bid equal to 0 or +∞) at all times.

If at time t the nth auction associated with the source j occurs, the outcome of this auction

is the following (corresponding to a Vickrey or second-price auction):

• If bjt > pjn, then the ad trader wins the auction: he pays the price pjn and his banner

is displayed. In that case, the variable ξjn is equal to 1 if there is a conversion, and is

equal to 0 otherwise.4

• If bjt ≤ pjn, then another trader wins the auction. In that case, the variable ξjn is not

relevant.

We assume that, for each j ∈ {1, . . . , J}, (pjn)n∈N∗ are i.i.d. random variables distributed

according to an absolutely continuous distribution. We denote by F j the cumulative dis-

tribution function and by f j the probability density function associated with the source j.

We assume, for each j ∈ {1, . . . , J}, that:

• (H1) ∀n ∈ N∗, pjn is almost surely positive. In particular, F j(0) = 0.

• (H2) ∀n ∈ N∗, pjn ∈ L1(Ω).

• (H3) ∀p > 0, f j(p) > 0.

We also assume that the random variables (pjn)j∈{1,...,J},n∈N∗ are all independent.

2.2.2 State variables

Each time the ad trader wins an auction, he pays the second best price and gets an impres-

sion. The cash spent by the ad trader to buy inventory is modeled by a process (Xt)t. Its

dynamics is:

dXt =
J∑
j=1

pj
Nj
t

1{
bjt>p

j

N
j
t

}dN j
t , X0 = 0.

For each j ∈ {1, . . . , J}, the number of impressions associated with the auction requests

coming for the source j is modeled by an inventory process (Ijt )t. For each j ∈ {1, . . . , J},
the dynamics of (Ijt )t is:

dIjt = 1{
bjt>p

j

N
j
t

}dN j
t , Ij0 = 0.

4In practice, there are sometimes issues with the attribution of acquisitions to a speci�c impression.
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To simplify exposition, we write It = (I1t , . . . , I
J
t ) ∈ NJ , and we write the dynamics of the

process (It)t:

dIt =
J∑
j=1

1{
bjt>p

j

N
j
t

}dN j
t e
j ,

where (e1, . . . , eJ) is the canonical basis of RJ .

Conversions are modeled by the variables (ξjn)j∈{1,...,J},n∈N∗ . We assume that they are all

independent and independent from the variables (pjn)j∈{1,...,J},n∈N∗ . Moreover, we assume

that for each j ∈ {1, . . . , J}, (ξjn)n∈N∗ are i.i.d. random variables distributed according to a

Bernoulli distribution with parameter νj ∈ [0, 1] (assumed to be known5). The parameters

νj ∈ [0, 1] are known in practice as conversion rates and represent the probability to turn

an impression into a conversion.

For each j ∈ {1, . . . , J}, the number of conversions associated with the auction requests

coming for the source j is modeled by a process (Cjt )t. For each j ∈ {1, . . . , J}, the
dynamics of (Cjt )t is:

dCjt = ξj
Nj
t

1{
bjt>p

j

N
j
t

}dN j
t , Cj0 = 0.

To simplify exposition, we write Ct = (C1
t , . . . , C

J
t ) ∈ NJ , and we write the dynamics of the

process (Ct)t:

dCt =

J∑
j=1

ξj
Nj
t

1{
bjt>p

j

N
j
t

}dN j
t e
j .

2.3 Indi�erence pricing of performance-based contracts

One of the main goals in this paper is to price performance-based contracts such as those

discussed above. For that purpose, we are going to use an approach called indi�erence

pricing. In this approach, the price of a contract is the price that makes the intermediary

indi�erent between (i) signing the contract with the advertiser and using its best algorithms

to maximize (in utility terms) its �nal payo� and (ii) not signing the contract (and stay

idle). Indi�erence pricing is used in �nance for pricing contingent claims in incomplete mar-

kets (see [6, 11]), and it is perfectly suited for performance-based contracts in the case of

the ad industry. In our case, pricing a contract with this approach requires �rst to compute

the optimal strategy of the intermediary, given the payo� of the contract, and the problem

is therefore a problem of stochastic optimal control.

In the risk-neutral case � considered in Section 3 � the problem faced by the intermediary is

that of �nding an optimal bidding strategy to maximize over (b1t , . . . , b
J
t )t ∈ AJ the expected

5See [10] for a model in which conversion rates are unknown.
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payo�

E
[
P −XT + g(I1T , . . . , I

J
T , C

1
T , . . . , C

J
T )
]
,

where A is the set of predictable processes with values in R+ ∪ {+∞}.

In particular, the indi�erence price P ∗ of the contract is de�ned as:

P ∗ = inf
(b1t ,...,b

J
t )t∈AJ

E
[
XT − g(I1T , . . . , I

J
T , C

1
T , . . . , C

J
T )
]
.

Theoretically, this price can be positive or nonpositive, but the design of the contracts, i.e.

the choice of g, should be such that it is indeed positive.

In addition to the case of a risk-neutral intermediary, we consider in Section 4 the case of

a risk-averse one. More precisely, we consider the case of an intermediary with constant

absolute risk aversion γ > 0. In that case, the problem of the intermediary is to maximize

over (b1t , . . . , b
J
t )t ∈ AJ the expected utility

E
[
− exp

(
−γ
(
P −XT + g

(
I1T , . . . , I

J
T , C

1
T , . . . , C

J
T

)))]
,

and the indi�erence pricing approach leads to the following de�nition for the price of the

contract:6

P ∗ =
1

γ
log

(
inf

(b1t ,...,b
J
t )t∈AJ

E
[
exp

(
γ
(
XT − g

(
I1T , . . . , I

J
T , C

1
T , . . . , C

J
T

)))])
. (2.1)

3 Solution in the risk-neutral case

In this section, we consider the special case of a risk-neutral intermediary with the following

control problem:7

inf
(b1t ,...,b

J
t )t∈AJ

E
[
XT − g(I1T , . . . , I

J
T , C

1
T , . . . , C

J
T )
]
. (3.1)

3.1 Hamilton-Jacobi equation and reduction to a system of ODEs

The value function associated with this problem is the function

U : (t, x, I, C) ∈ [0, T ]×R+×NJ ×NJ 7→ inf
(b1s,...,b

J
s )s≥t∈AJt

E
[
Xb,t,x
T − g(Ib,t,IT , Cb,t,CT )

]
, (3.2)

where At is the set of predictable processes on [t, T ] with values in R+ ∪ {+∞}, and where

dXb,t,x
s =

J∑
j=1

pj
Nj
s
1{

bjs>p
j

N
j
s

}dN j
s , Xb,t,x

t = x,

6By de�nition, P ∗ is such that:

sup
(b1t ,...,b

J
t )t∈AJ

E
[
− exp

(
−γ
(
P ∗ −XT + g

(
I1T , . . . , I

J
T , C

1
T , . . . , C

J
T

)))]
= − exp(0) = −1.

7We consider hereafter a minimization problem instead of a maximization problem.
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dIjs
b,t,Ij

= 1{
bjs>p

j

N
j
s

}dN j
s , Ijt

b,t,Ij

= Ij , ∀j ∈ {1, . . . , J},

and

dCjs
b,t,Cj

= ξj
Nj
s
1{

bjs>p
j

N
j
s

}dN j
s , Cjt

b,t,Cj

= Cj , ∀j ∈ {1, . . . , J}.

The associated Hamilton-Jacobi-Bellman equation is

−∂tu(t, x, I, C)−
J∑
j=1

λj inf
bj∈R+

∫ bj

0
f j(p)

[
(1− νj)(u(t, x+ p, I + ej , C)− u(t, x, I, C))

+νj(u(t, x+ p, I + ej , C + ej)− u(t, x, I, C))
]
dp = 0, (3.3)

with terminal condition

u(T, x, I1, . . . , IJ , C1, . . . , CJ) = x− g(I1, . . . , IJ , C1, . . . , CJ).

Eq. (3.3) is a non-standard integro-di�erential HJB equation in dimension 2J + 2. In order

to �nd a solution to this equation, we consider the following ansatz:

u(t, x, I1, . . . , IJ , C1, . . . , CJ) = x+ θI,C(t),

where (θI,C)(I,C)∈NJ×NJ is a family of functions de�ned on [0, T ].

With this ansatz, it is straightforward to see that Eq. (3.3) becomes

−θ′I,C(t)−
J∑
j=1

λj inf
bj∈R+

∫ bj

0
f j(p)

[
p+ (1− νj)(θI+ej ,C(t)− θI,C(t))

+νj(θI+ej ,C+ej (t)− θI,C(t))
]
dp = 0, (3.4)

with terminal condition θI,C(T ) = −g(I, C).

For each j ∈ {1, . . . , J}, it is straightforward to see that the minimum of

bj 7→
∫ bj

0
f j(p)

[
p+ (1− νj)(θI+ej ,C(t)− θI,C(t)) + νj(θI+ej ,C+ej (t)− θI,C(t))

]
dp

is reached at

bj∗I,C(t) =
(
θI,C(t)−

(
(1− νj)θI+ej ,C(t) + νjθI+ej ,C+ej (t)

))
+
.

Therefore, after an integration by parts, Eq. (3.4) becomes

−θ′I,C(t) +

J∑
j=1

λj
∫ bj∗I,C(t)

0
F j(p)dp = 0, (3.5)

with terminal condition θI,C(T ) = −g(I, C).
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3.2 Solution and special cases

3.2.1 A general result

We now state a theorem in which we prove the existence of a solution to Eq. (3.5) and solve

both the pricing problem and the strategic problem faced by the ad trader.

Theorem 3.1. Let us introduce the set

E =

{
(aI,C)(I,C)∈NJ×NJ , ‖a‖ = sup

(I,C)∈NJ×NJ

1

1 + ‖I‖1 + ‖C‖1
|aI,C | < +∞

}
There exists a unique function θ ∈ C1([0, T ], E), such that the family of functions (θI,J)(I,C)∈NJ×NJ

is solution of Eq. (3.5).

The function u : (t, x, I, C) 7→ x + θI,C(t) is the value function U of Eq. (3.2) associated

with the control problem (3.1).

The optimal strategy of the ad trader is given in closed-loop by

bj∗t = bj∗It−,Ct−(t) =
(
θIt−,Ct−(t)−

(
(1− νj)θIt−+ej ,Ct−(t) + νjθIt−+ej ,Ct−+ej (t)

))
+
.

The price of the contract is:

P ∗ = θ0,0(0).

Proof. Let us notice �rst that (E, ‖‖) is a Banach space and that, by assumption,

(−g(I, C))I,C ∈ E.

Let us introduce

G : (aI,C)I,C ∈ E 7→

 J∑
j=1

λj
∫ bj∗I,C

0
F j(p)dp


I,C

,

where

bj∗I,C =
(
aI,C −

(
(1− νj)aI+ej ,C + νjaI+ej ,C+ej

))
+
.

The �rst step of the proof is to show that ∀a ∈ E,G (a) ∈ E.

For that purpose, let us notice that:

|G(a)I,C | =

∣∣∣∣∣∣
J∑
j=1

λj
∫ bj∗I,C

0
F j(p)dp

∣∣∣∣∣∣
≤

J∑
j=1

λj |bj∗I,C |

≤
J∑
j=1

λj
(
|aI,C |+ (1− νj)|aI+ej ,C |+ νj |aI+ej ,C+ej |

)

10



≤
J∑
j=1

λj
(
‖a‖(1 + ‖I‖1 + ‖C‖1) + (1− νj)‖a‖(2 + ‖I‖1 + ‖C‖1)

+νj‖a‖(3 + ‖I‖1 + ‖C‖1)
)

Therefore,

‖G(a)‖ ≤ 4

J∑
j=1

λj‖a‖ < +∞,

and we have indeed G : E → E.

The second step is to show that G : E → E is a Lipschitz function.

For that purpose, let us consider a, α ∈ E. We have

G(a)I,C −G(α)I,C =
J∑
j=1

λj
∫ bj∗I,C

βj∗I,C

F j(p)dp,

where

bj∗I,C =
(
aI,C −

(
(1− νj)aI+ej ,C + νjaI+ej ,C+ej

))
+

and

βj∗I,C =
(
αI,C −

(
(1− νj)αI+ej ,C + νjαI+ej ,C+ej

))
+
.

Therefore,

|G(a)I,C −G(α)I,C | ≤
J∑
j=1

λj |βj∗I,C − b
j∗
I,C |

≤
J∑
j=1

λj
(
|aI,C − αI,C |+ (1− νj)|aI+ej ,C − αI+ej ,C |

+νj |aI+ej ,C+ej − αI+ej ,C+ej |
)

≤
J∑
j=1

λj‖a− α‖
(
(1 + ‖I‖1 + ‖C‖1) + (1− νj)(2 + ‖I‖1 + ‖C‖1)

+νj(3 + ‖I‖1 + ‖C‖1)
)
.

Consequently,

‖G(a)−G(α)‖ ≤ 4
J∑
j=1

λj‖a− α‖.

Eq. (3.5) is therefore a (backward) Cauchy problem for the function θ : [0, T ] → E, which

writes

θ′(t) = G(θ(t)), θ(T ) = (−g(I, C))I,C ,

11



where G : E → E is a Lipschitz function. By Cauchy-Lipschitz theorem, there is a unique

global solution θ ∈ C1([0, T ], E) to Eq. (3.5).

Now, we use a veri�cation argument. We consider a given t ∈ [0, T ), and a given bidding

strategy (b1s, . . . , b
J
s )s≥t ∈ AJt . We have:

u
(
T,Xb,t,x

T− , Ib,t,IT− , C
b,t,C
T−

)
= u(t, x, I, C) +

∫ T

t
∂tu

(
s,Xb,t,x

s− , Ib,t,Is− , Cb,t,Cs−

)
ds

+

∫ T

t

J∑
j=1

(
u

(
s,Xb,t,x

s− + pj
Nj
s
1{

bjs>p
j

N
j
s

}, Ib,t,Is− + 1{
bjs>p

j

N
j
s

}ej , Cb,t,Cs− + ξj
Nj
s
1{

bjs>p
j

N
j
s

}ej
)

−u
(
s,Xb,t,x

s− , Ib,t,Is− , Cb,t,Cs−

))
dN j

s .

Therefore,

u
(
T,Xb,t,x

T− , Ib,t,IT− , C
b,t,C
T−

)
= u(t, x, I, C) +

∫ T

t
θ′
Ib,t,Is− ,Cb,t,Cs−

(s)ds

+

∫ T

t

J∑
j=1

pj
Nj
s
1{

bjs>p
j

N
j
s

} + θ
Ib,t,Is− +1{

b
j
s>p

j

N
j
s

}ej ,Cb,t,Cs− +ξj
N
j
s

1{
b
j
s>p

j

N
j
s

}ej (s)

−θ
Ib,t,Is− ,Cb,t,Cs−

(s)
)
dN j

s .

Because � by (H2) � ∀j ∈ {1, . . . , J}, ∀n ∈ N∗, pjn ∈ L1(Ω), and because ∀s ∈ [t, T ], θ(s) ∈ E,
we have:

E
[
Xb,t,x
T− + θ

Ib,t,IT− ,Cb,t,CT−
(T−)

]
= u(t, x, I, C) + E

[∫ T

t
θ′
Ib,t,Is− ,Cb,t,Cs−

(s)ds

+

∫ T

t

J∑
j=1

∫ bj

0
f j(p)

(
pj + (1− νj)θ

Ib,t,Is− +ej ,Cb,t,Cs−
(s) + νjθ

Ib,t,Is− +ej ,Cb,t,Cs− +ej
(s)

−θ
Ib,t,Is− ,Cb,t,Cs−

(s)
)
dpλjds

]
.

By de�nition of θ, we have therefore

E
[
Xb,t,x
T − g

(
Ib,t,IT , Cb,t,CT

)]
= E

[
Xb,t,x
T− + θ

Ib,t,IT− ,Cb,t,CT−

]
≥ u(t, x, I, C),

with equality when ∀j ∈ {1, . . . , J} , ∀s ∈ [t, T ), bjs = bj∗Is−,Cs−(s).
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Therefore, the value function of the control problem is indeed given by

u(t, x, I, C) = x+ θI,C(t),

and the optimal bidding strategy is given in closed-loop by

bj∗t = bj∗It−,Ct−(t) =
(
θIt−,Ct−(t)−

(
(1− νj)θIt−+ej ,Ct−(t) + νjθIt−+ej ,Ct−+ej (t)

))
+
.

Finally, the indi�erence price of the contract is given by:

P ∗ = u(0, 0, 0, 0) = θ0,0(0).

Theorem 3.1 is a general result which deserves a few comments. First, the optimal bidding

strategy and the price of the contract depend on a single function θ, which is the solution

of an ordinary di�erential equation (a priori in in�nite dimension). Second, in many cases

(see below), this ordinary di�erential equation boils down in fact to a �nite system of (1-

dimensional) ordinary di�erential equations that can be solved easily, at least numerically

on a grid.

3.2.2 Special cases

Simple inventory-based performance contracts

Let us consider �rst the special case where

g(i1, . . . , iJ , c1, . . . , cJ) = gI(i
1 + . . .+ iJ).

In that case, by using the ansatz θI,C(t) = θ̃I1+...+IJ (t), Eq. (3.5) boils down to

−θ̃′ι(t) +

∫ b̃∗ι (t)

0

J∑
j=1

λjF j(p)dp = 0, (3.6)

with terminal condition θ̃ι(T ) = −gI(ι), where

b̃∗ι (t) =
(
θ̃ι(t)− θ̃ι+1(t)

)
+
.

In particular, the optimal bidding strategy is the same across all sources of inventory, and

it only depends on the total number of impressions already purchased, and on the time to

horizon:

∀j ∈ {1, . . . , J} , bj∗I,C(t) = b̃∗I1+...+IJ (t).

It is also noteworthy that when gI(ι) = −πI(ι − I)−, Eq. (3.6) boils down to a triangular

system of ordinary di�erential equations indexed by ι ∈
{

0, . . . , I
}
. This system is nonlin-

ear, but the solution can be approximated very easily on a grid.
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Simple conversion-based performance contracts

Let us consider now the special case where

g(i1, . . . , iJ , c1, . . . , cJ) = gC(c1 + . . .+ cJ).

In that case, by using the ansatz θI,C(t) = θ̃C1+...+CJ (t), Eq. (3.5) boils down to

−θ̃′c(t) +

J∑
j=1

λj
∫ b̃j∗c (t)

0
F j(p)dp = 0, (3.7)

with terminal condition θ̃c(T ) = −gC(c), where

b̃j∗c (t) = νj
(
θ̃c(t)− θ̃c+1(t)

)
+
.

In particular, the optimal bidding strategy is not the same across all sources of inventory. It

depends on the total number of conversions already obtained, on the time to horizon, and

on the probability of conversion associated with each source:

∀j ∈ {1, . . . , J} , bj∗I,C(t) = b̃j∗
C1+...+CJ

(t).

What is interesting is that the bidding strategy associated with each source of inventory is

proportional to the probability of conversion associated with that source of inventory (see [9]

for a similar result in a dual problem).

As above, it is noteworthy that when gC(c) = −πC(c − C)−, Eq. (3.7) boils down to a

triangular system of ordinary di�erential equations indexed by c ∈
{

0, . . . , C
}
. This system

is nonlinear, but the solution can be approximated very easily on a grid.

Inventory-and-conversion-based performance contracts

The third example we consider is related to payo� functions of the form:

g(i1, . . . , iJ , c1, . . . , cJ) = gI(I
1 + . . .+ IJ) + gC(c1 + . . .+ cJ).

In that case, by using the ansatz θI,C(t) = θ̃I1+...+IJ ,C1+...+CJ (t), Eq. (3.5) boils down to

−θ̃′ι,c(t) +

J∑
j=1

λj
∫ b̃j∗ι,c(t)

0
F j(p)dp = 0, (3.8)

with terminal condition θ̃ι,c(T ) = −gI(ι)− gC(c), where

b̃j∗ι,c(t) =
(
θ̃ι,c(t)−

(
(1− νj)θ̃ι+1,c(t) + νj θ̃ι+1,c+1(t)

))
+
.

The optimal bidding strategy and the price of the contract can be obtained by solving a

system of ODEs. The main points here are that the dimension of the indices is reduced

14



from 2J to 2, and that there is (a priori) a mixed e�ect between ι and c.

It is also noteworthy that, when gI(ι) = −πI(ι− I)− and gC(c) = −πC(c− C)−, Eq. (3.8)

boils down to a system of ordinary di�erential equations indexed by (ι, c) ∈
{

0, . . . , I
}
×{

0, . . . , C
}
. This system is nonlinear, but the solution can be approximated very easily on

a grid.

Performance contracts with separable payo�s

The last example we consider is related to payo� functions of the form:

g(i1, . . . , iJ , c1, . . . , cJ) = g1I (i
1) + . . .+ gJI (iJ) + g1C(c1) + . . .+ gJC(cJ).

In that case, by using the ansatz θI,C(t) = θ̃1I1,C1(t) + . . .+ θ̃J
IJ ,CJ

(t), Eq. (3.5) boils down

to

∀j ∈ {1, . . . , J} , −θ̃j
′

Ij ,Cj
(t) + λj

∫ b̃j∗
Ij ,Cj

(t)

0
F j(p)dp = 0, (3.9)

with terminal condition ∀j ∈ {1, . . . , J} , θ̃j
Ij ,Cj

(T ) = −gjI(Ij)− g
j
C(Cj), where

b̃j∗
Ij ,Cj

(t) =
(
θ̃j
Ij ,Cj

(t)−
(

(1− νj)θ̃j
Ij+1,Cj

(t) + νj θ̃j
Ij+1,Cj+1

(t)
))

+
.

The optimal bidding strategy for the source j only depends on the number of impressions

and on the number of conversions associated with the source j. In other words, the bidding

strategy of the di�erent sources are independent. Therefore, everything works as if there

were J contracts, one for each source, and the price of the contract is the sum of the prices

of these J contracts:

P ∗ = θ̃10,0(0) + . . .+ θ̃J0,0(0).

3.3 Numerical examples

In this section we consider two numerical examples in order to illustrate the use of our model

in the case of a risk-neutral intermediary. The two chosen examples represent baseline real-

istic situations: (i) a contract where the performance is measured in terms of the number of

impressions but where the number of auctions is small (for example a campaign targeting a

reduced segment of users or a campaign where the ads have an uncommon format), and (ii)

a contract where the performance is measured only in terms of the number of conversions.

In both cases, in order to simplify the exposition, we consider the simple case where there

is only one source of inventory (i.e. J = 1).8

For each example, we provide the optimal bidding strategy as a function of the remaining

time and the relevant state variables (the number of impressions or the number of conver-

sions). Then, we consider Monte Carlo simulations for the auctions and we plot, by using

8Given the form of the solutions obtained in the previous paragraphs, this restriction is not a real issue.
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the outcomes of the simulations, the empirical distribution of the money spent for the cam-

paign (including the �nal payo� g) when one uses the optimal strategy. These Monte Carlo

simulations enable to assess the risk associated with the contracts: sometimes the ad trader

ends up paying more than expected (sometimes less also), because the realizations of the

price to beat were higher than expected and/or because the number of conversions turned

out to be lower than expected.

3.3.1 Inventory-based performance contracts

The �rst example we consider is that of a contract �guaranteeing� 5000 impressions over

a 10-hour period on a market with low liquidity and expensive inventory. As mentioned

above, this �rst case is relevant when the audience or the inventory is reduced, for instance

when one targets a special segment of users, premium inventory or a particular format for

the ad creative.

We consider that the average number of auctions per second is equal to 1 (i.e. λ = 1 s−1).

We consider that the prices to beat are distributed according to an exponential distribution

f(p) = µ exp(−µp)1p≥0,

where µ = 200 $−1. This corresponds to an average price to beat of $0.005, i.e. a high

average price to beat of $5 in terms of CPM.

The contract we consider is based on the promise to deliver 5000 impressions over a 10-hour

period. In line with the �rst special case discussed above (inventory-based performance

contracts) we consider

gI(ι) = −πI(ι− Ī)−,

with πI = $0.001, and Ī = 5000. In other words, for every impression missing to reach the

5000 target, the ad trader will pay $0.001 to the advertiser (this corresponds to a maximum

CPM of $1).

Figure 1: Left: the function (ι, t) 7→ θ̃ι(t). Right: the optimal bidding function (ι, t) 7→ b̃∗ι (t).
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The function (ι, t) 7→ θ̃ι(t) and the optimal bidding function (ι, t) 7→ b̃∗ι (t) are plotted on

Figure 1. We see on Figure 1 that there is a cap on the optimal bidding strategy. This cap,

equal to $0.001, corresponds to πI , the penalty to be paid for each missing impression.

Figure 2 shows the evolution of the number of impressions, the cash spent and the bid level

for a sample execution when one uses the optimal strategy.

Figure 2: Evolution of the number of impressions, the cash spent and the bid level for an

inventory-based performance contract.

The indi�erence price is here equal to θ̃0(0) = $1.8251. By using Monte Carlo simulations

(with 10000 draws) with the optimal bidding strategy found earlier, we recover an average

spent of $1.8249, and the standard deviation of the money spent is $0.03122. The distri-

bution of the money spent is plotted on Figure 3. On average the algorithm is able to buy

4997.78 impressions, with a standard deviation of 3.27 impressions.

17



Figure 3: Distribution of the money spent over [0, T ] when the optimal bidding strategy is

used � Monte Carlo simulations with 10000 draws.

3.3.2 Conversion-based performance contracts

The second example we consider is that of a contract �guaranteeing� 5000 conversions over

a 10-hour period on a market with high liquidity and cheap inventory.

We consider that the average number of auctions per second is equal to 500 (i.e. λ =

500 s−1). We consider that the prices to beat are distributed according to an exponential

distribution

f(p) = µ exp(−µp)1p≥0,

where µ = 1000 $−1. This corresponds to an average price to beat of $0.001, i.e. an average

price to beat of $1 in terms of CPM.

The contract we consider is based on the promise to obtain 5000 conversions (here clicks)

over a 10-hour period. The probability of conversion is ν = 0.001. In line with the second

special case discussed above (conversion-based performance contracts) we consider

gC(c) = −πC(c− C̄)−,

with πC = $0.4, and C̄ = 5000. In other words, for each conversion missing to reach the

5000 target, the ad trader will pay $0.4 to the advertiser (this corresponds to a maximum

CPC or CPA of $0.4).

The function (c, t) 7→ θ̃c(t) and the optimal bidding function (c, t) 7→ b̃∗c(t) are plotted on

Figure 4. We see on Figure 4 that there is a cap on the optimal bidding strategy. This cap

is related to the probability of conversion and to the penalty to be paid for each missing

conversion.
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Figure 4: Left: the function (c, t) 7→ θ̃c(t). Right: the optimal bidding function (c, t) 7→
b̃∗c(t).

Figure 5 shows the evolution of the number of impressions, the number of conversions, the

cash spent and the bid level for a sample execution when one uses the optimal strategy.

Figure 5: Evolution of the number of impressions, the number of conversions, the cash spent

and the bid level for a conversion-based performance contract.

The indi�erence price θ̃0(0) computed numerically is equal to $771.61. By using Monte
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Carlo simulations (10000 draws) with the optimal bidding strategy found numerically, we

recover an average spent of $758.91, and the standard deviation of the money spent is

$21.64. The distribution of the money spent is plotted in Figure 6. The average number of

conversions obtained is 4997.11 with a standard deviation of 4.048 conversions.

Figure 6: Distribution of the money spent over [0, T ] when the optimal bidding strategy is

used � Monte Carlo simulations with 10000 draws.

As above, we see that, from the point of view of the ad trader (the intermediary), there

is some risk in accepting to sign performance-based contracts. This is the reason why we

believe that maximizing the expected value of the payo� is insu�cient. In practice, agents

are risk-averse and risk aversion should be taken into account, both in the pricing and in

the bidding strategy.

4 Introducing risk aversion

In the previous section, we have only considered the case of a risk-neutral trader who mini-

mizes his costs. In practice, one must take risk into account. For that purpose, we consider

the case of a (risk-averse) trader who maximizes an expected utility criterion corresponding

to a constant absolute risk aversion coe�cient γ.

In our framework, this corresponds to the following optimization problem

sup
(b1t ,...,b

J
t )t∈AJ

E
[
− exp

(
−γ
(
−XT + g(I1T , . . . , I

J
T , C

1
T , . . . , C

J
T )
))]

,

or equivalently to

inf
(b1t ,...,b

J
t )t∈AJ

E
[
exp

(
γ
(
XT − g(I1T , . . . , I

J
T , C

1
T , . . . , C

J
T )
))]

. (4.1)
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To solve this problem, we assume, in addition to the above assumptions (H1), (H2) and

(H3) on the law of the price to beat, that:

(H4) ∀j ∈ {1, . . . , J} ,∀φ > 0,

∫ +∞

0
eφpf j(p)dp < +∞.

4.1 Hamilton-Jacobi equation and reduction to a system of ODEs

The value function associated with this problem is the function:

U : (t, x, I, C) ∈ [0, T ]×R+×NJ×NJ 7→ inf
(b1s,...,b

J
s )s≥t∈AJt

E
[
exp

(
γ
(
Xb,t,x
T − g(Ib,t,IT , Cb,t,CT )

))]
,

(4.2)

The associated Hamilton-Jacobi-Bellman equation is:

−∂tu(t, x, I, C)−
J∑
j=1

λj inf
bj∈R+

∫ bj

0
f j(p)

[
(1− νj)(u(t, x+ p, I + ej , C)− u(t, x, I, C))

+νj(u(t, x+ p, I + ej , C + ej)− u(t, x, I, C))
]
dp = 0, (4.3)

with terminal condition

u(T, x, I1, . . . , IJ , C1, . . . , CJ) = exp
(
γ
(
x− g(I1, . . . , IJ , C1, . . . , CJ)

))
.

Eq. (4.3) is a non-standard integro-di�erential HJB equation in dimension 2J + 2. In order

to �nd a solution to this equation, we consider the following ansatz:

u(t, x, I1, . . . , IJ , C1, . . . , CJ) = exp(γ(x+ θI,C(t))),

where (θI,C)(I,C)∈NJ×NJ is a family of functions de�ned on [0, T ].

With this ansatz, it is straightforward to see that Eq. (4.3) becomes:

−γθ′I,C(t)−
J∑
j=1

λj inf
bj∈R+

∫ bj

0
f j(p)

[
eγp
(

(1− νj)eγ(θI+ej ,C(t)−θI,C(t))

+νjeγ(θI+ej ,C+ej
(t)−θI,C(t))

)
− 1
]
dp = 0, (4.4)

with terminal condition θI,C(T ) = −g(I, C).

For each j ∈ {1, . . . , J}, it is straightforward to see that the minimum of∫ bj

0
f j(p)

[
eγp
(

(1− νj)eγ(θI+ej ,C(t)−θI,C(t)) + νjeγ(θI+ej ,C+ej
(t)−θI,C(t))

)
− 1
]
dp

is reached at

bj∗I,C(t) =

(
−1

γ
log
(
ηj∗I,C(θ(t))

))
+

,

where

ηj∗I,C(θ(t)) = (1− νj)eγ(θI+ej ,C(t)−θI,C(t)) + νjeγ(θI+ej ,C+ej
(t)−θI,C(t))

Therefore, Eq. (4.4) can be written in two di�erent manners:
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1. by using the value at which the minimum of the integral is reached:

−γθ′I,C(t)−
J∑
j=1

λj
∫ (
− 1
γ
log(ηj∗I,C(θ(t)))

)
+

0
f j(p)

[
eγpηj∗I,C(θ(t))− 1

]
dp = 0, (4.5)

2. or by using an integration by parts:

−θ′I,C(t) +
J∑
j=1

λjηj∗I,C(θ(t))

∫ (
− 1
γ
log(ηj∗I,C(θ(t)))

)
+

0
F j(p)eγpdp = 0, (4.6)

in both cases with terminal condition θI,C(T ) = −g(I, C).

4.2 Solution and special cases

4.2.1 A general result

We now state a theorem in which we prove the existence of a solution to Eq. (4.4) and solve

both the pricing problem and the strategic problem faced by the ad trader.

Theorem 4.1. As in Theorem 3.1, we consider the set

E =

{
(aI,C)(I,C)∈NJ×NJ , ‖a‖ = sup

(I,C)∈NJ×NJ

1

1 + ‖I‖1 + ‖C‖1
|aI,C | < +∞

}

There exists a unique function θ ∈ C1([0, T ], E), such that the family of functions (θI,J)(I,C)∈NJ×NJ

is solution of Eq. (4.4).

The function u : (t, x, I, C) 7→ exp(γ(x + θI,C(t))) is the value function U of Eq. (4.2)

associated with the control problem (4.1).

The optimal strategy of the ad trader is given by

bj∗I,C(t) =

(
−1

γ
log
(

(1− νj)eγ(θI+ej ,C(t)−θI,C(t)) + νjeγ(θI+ej ,C+ej
(t)−θI,C(t))

))
+

.

The price of the contract is:

P ∗ =
1

γ
log(u(0, 0, 0, 0)) = θ0,0(0).

Proof. As above, by assumption, (−g(I, C))I,C is in the Banach space E.

Let us introduce

ηj : (aI,C)I,C ∈ E 7→
(

(1− νj)eγ(aI+ej ,C−aI,C) + νjeγ(aI+ej ,C+ej
−aI,C)

)
I,C

.
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Let us introduce

G : (aI,C)I,C ∈ E 7→

 J∑
j=1

λjηj(a)I,C

∫ bj∗I,C

0
eγpF j(p)dp


I,C

,

where

bj∗I,C =

(
−1

γ
log
(
ηj(a)I,C

))
+

.

The �rst step of the proof is to show that ∀a ∈ E,G (a) ∈ `∞ ⊂ E.

For that purpose, let us notice that:

• if ηj(a)I,C ≥ 1 then bj∗I,C = 0 and the jth term of the sum in the de�nition of G(a)I,C
is equal to 0,

• otherwise,

ηj(a)I,C

∫ bj∗I,C

0
eγpF j(p)dp

= ηj(a)I,C

∫ e
γb
j∗
I,C

1
F j
(

1

γ
log(q)

)
dq

= ηj(a)I,C

∫ e
γb
j∗
I,C

0
F j
(

1

γ
log(q)

)
dq

=
1

γ
ηj(a)I,C

∫ 1

ηj(a)I,C

0
F j
(

1

γ
log(q)

)
dq

≤ 1

γ
.

Because G(a) ≥ 0, we know therefore that

‖G(a)‖∞ ≤
J∑
j=1

λj

γ
.

Now, it is straightforward to see that G : E → E is a locally Lipschitz function.

As a consequence, Eq. (4.4) is a (backward) Cauchy problem for the function θ : [0, T ]→ E

which writes

θ′(t) = G(θ(t)), θ(T ) = (−g(I, C))I,C

where G : E → E is a locally Lipschitz function. By Cauchy-Lipschitz theorem, there is a

unique local solution θ to Eq. (4.4).

But, because G(θ(t)) ≥ 0 and ‖G(θ(t))‖∞ ≤
∑J

j=1
λj

γ , the solution is global.
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Now, by using a similar veri�cation argument as in Theorem 3.1 (here the hypothesis (H4)

is required), we easily prove that the value function of the control problem is indeed given

by

u(t, x, I, C) = exp(γ(x+ θI,C(t))),

and the optimal bidding strategy is given by

bj∗I,C(t) =

(
−1

γ
log
(

(1− νj)eγ(θI+ej ,C(t)−θI,C(t)) + νjeγ(θI+ej ,C+ej
(t)−θI,C(t))

))
+

.

Finally, the indi�erence price of the contract, as de�ned in Eq. (2.1), is given by:

P ∗ = θ0,0(0).

Theorem 4.1 is a general result. As in the risk-neutral case of Section 3, the optimal bidding

strategy and the price of the contract depend on a single function θ, which is the solution

of an ordinary di�erential equation (in in�nite dimension). As above, in many cases (see

below), this equation boils down to a �nite system of di�erential equations that can be

solved easily, at least numerically on a grid.

4.2.2 Special cases

Simple inventory-based performance contracts

Let us consider �rst the special case where

g(i1, . . . , iJ , c1, . . . , cJ) = gI(i
1 + . . .+ iJ).

In that case, by using the ansatz θI,C(t) = θ̃I1+...+IJ (t), Eq. (4.6) boils down to

−θ̃′ι(t) +

∫ b̃∗ι (t)

0

J∑
j=1

λjF j(p)eγ(p+θ̃ι+1(t)−θ̃ι(t))dp = 0, (4.7)

with terminal condition θ̃ι(T ) = −gI(ι), where

b̃∗ι (t) =
(
θ̃ι(t)− θ̃ι+1(t)

)
+
.

In particular, the optimal bidding strategy is the same across all sources of inventory, and

it only depends on the total number of impressions already purchased, and on the time to

horizon:

∀j ∈ {1, . . . , J} , bj∗I,C(t) = b̃∗I1+...+IJ (t).

It is also noteworthy that when gI(ι) = −πI(ι − I)−, Eq. (4.7) boils down to a triangular

system of ordinary di�erential equations indexed by ι ∈
{

0, . . . , I
}
. This system is nonlin-

ear, but the solution can be approximated very easily on a grid.
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Simple conversion-based performance contracts

Let us consider now the special case where

g(i1, . . . , iJ , c1, . . . , cJ) = gC(c1 + . . .+ cJ).

In that case, by using the ansatz θI,C(t) = θ̃C1+...+CJ (t), Eq. (4.6) boils down to

−θ̃′c(t) +
J∑
j=1

λj
(

(1− νj) + νjeγ(θ̃c+1(t)−θ̃c(t))
)∫ b̃j∗c (t)

0
F j(p)eγpdp = 0, (4.8)

with terminal condition θ̃c(T ) = −gC(c), where

b̃j∗c (t) =

(
−1

γ
log
(

(1− νj) + νjeγ(θ̃c+1(t)−θ̃c(t))
))

+

.

In particular, the optimal bidding strategy is not the same across all sources of inventory. It

depends on the total number of conversions already obtained, on the time to horizon, and

on the probability of conversion associated with each source:

∀j ∈ {1, . . . , J} , bj∗I,C(t) = b̃j∗
C1+...+CJ

(t).

As above, it is noteworthy that when gC(c) = −πC(c − C)−, Eq. (4.8) boils down to a

triangular system of ordinary di�erential equations indexed by c ∈
{

0, . . . , C
}
. This system

is nonlinear, but the solution can be approximated very easily on a grid.

Inventory-and-conversion-based performance contracts

The third example we consider is that of payo� functions of the form:

g(i1, . . . , iJ , c1, . . . , cJ) = gI(I
1 + . . .+ IJ) + gC(c1 + . . .+ cJ).

In that case, by using the ansatz θI,C(t) = θ̃I1+...+IJ ,C1+...+CJ (t), Eq. (4.6) boils down to

−θ̃′ι,c(t)+
J∑
j=1

λj
(

(1− νj)eγ(θ̃ι+1,c(t)−θ̃ι,c(t)) + νjeγ(θ̃ι+1,c+1(t)−θ̃ι,c(t))
)∫ b̃j∗ι,c(t)

0
F j(p)eγpdp = 0,

(4.9)

with terminal condition θ̃ι,c(T ) = −gI(ι)− gC(c), where

b̃j∗ι,c(t) =

(
−1

γ
log
(

(1− νj)eγ(θ̃ι+1,c(t)−θ̃ι,c(t)) + νjeγ(θ̃ι+1,c+1(t)−θ̃ι,c(t))
))

+

.

The optimal bidding strategy and the price of the contract can be obtained by solving a

system of ODEs. The main points here are that the dimension of the indices is reduced

from 2J to 2, and that there is (a priori) a mixed e�ect between ι and c.

It is also noteworthy that, when gI(ι) = −πI(ι− I)− and gC(c) = −πC(c− C)−, Eq. (4.9)

boils down to a system of ordinary di�erential equations indexed by (ι, c) ∈
{

0, . . . , I
}
×
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{
0, . . . , C

}
. This system is nonlinear, but the solution can be approximated very easily on

a grid.

Performance contracts with separable payo�s

The last example we consider is related to payo� functions of the form:

g(i1, . . . , iJ , c1, . . . , cJ) = g1I (i
1) + . . .+ gJI (iJ) + g1C(c1) + . . .+ gJC(cJ).

In that case, by using the ansatz θI,C(t) = θ̃1I1,C1(t) + . . .+ θ̃J
IJ ,CJ

(t), Eq. (4.6) boils down

to

∀j ∈ {1, . . . , J} , 0 = −θ̃j
′

Ij ,Cj
(t)

+λj
(

(1− νj)eγ
(
θ̃j
Ij+1,Cj

(t)−θ̃j
Ij ,Cj

(t)
)

+ νje
γ
(
θ̃j
Ij+1,Cj+1

(t)−θ̃j
Ij ,Cj

(t)
))∫ b̃j∗

Ij ,Cj
(t)

0
F j(p)eγpdp,

(4.10)

with terminal condition ∀j ∈ {1, . . . , J} , θ̃j
Ij ,Cj

(T ) = −gjI(Ij)− g
j
C(Cj), where

b̃j∗
Ij ,Cj

(t) =

(
−1

γ
log

(
(1− νj)eγ

(
θ̃j
Ij+1,Cj

(t)−θ̃j
Ij ,Cj

(t)
)

+ νje
γ
(
θ̃
Ij+1,Cj+1

(t)−θ̃
Ij ,Cj

(t)
)))

+

.

The optimal bidding strategy for the source j only depends on the number of impressions

and on the number of conversions associated with the source j. In other words, the bidding

strategy of the di�erent sources are independent. Therefore, everything works as if there

were J contracts, one for each source, and the price of the contract is the sum of the prices

of these J contracts:

P ∗ = θ̃10,0(0) + . . .+ θ̃J0,0(0).

4.3 Numerical examples

We provide numerical examples to illustrate how the use of our risk-averse objective func-

tion a�ects the results obtained in the risk-neutral case in Section 3.3.

4.3.1 Inventory-based performance contracts

We consider again the contract �guaranteeing� 5000 impressions over a 10-hour period on a

market with low liquidity and expensive inventory. The set of parameters remains the same

as before: λ = 1 s−1, µ = 200 $−1 and πI = $0.001. The risk-aversion parameter is taken

to be γ = 100. The function (ι, t) 7→ θ̃ι(t) and the optimal bidding function (ι, t) 7→ b̃∗ι (t)

are plotted on Figure 7. Numerically, we obtain a price equal to θ̃0(0) = $1.8758, to be

compared to the lower price $1.8251 obtained in the risk-neutral case.
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Figure 7: Left: the function (ι, t) 7→ θ̃ι(t). Right: the optimal bidding function (ι, t) 7→ b̃∗ι (t).

Figure 8 shows the evolution of the number of impressions, the cash spent and the bid level

for a sample execution when one uses the optimal strategy.

Figure 8: Evolution of the number of impressions, the cash spent and the bid level for an

inventory-based performance contract.

Figure 9 shows the results of our Monte Carlo simulations (with 10000 trajectories). The

average amount spent in this case is $1.8274, with a standard deviation of $0.0291. In
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this risk-averse situation the number of impressions purchased is in average 4999.11 with a

standard deviation of 1.6722 impressions, closer to the target than in the risk-neutral case.

Figure 9: Monte Carlo simulations for the inventory-based performance contract in the

risk-averse case.

4.3.2 Conversion-based performance contracts

As in the risk-neutral case, the second example we consider is that of a contract �guaran-

teeing� 5000 conversions over a 10-hour period on a market with high liquidity and cheap

inventory. The set of parameters is the same as before: λ = 500 s−1, µ = 1000 $−1 and

πC = $0.4. The risk aversion parameter is taken to be γ = 0.3 (a smaller value than in the

�rst example, because the value of the contract is far larger).

The function (c, t) 7→ θ̃c(t) and the optimal bidding function (c, t) 7→ b̃∗c(t) are plotted on

Figure 10. We see that, in the risk-averse case, the optimal bidding function is steeper than

in the risk-neutral case: the ad trader chooses higher bids.

The price of the contract obtained numerically is θ̃0(0) = $868.25, a higher value than in

the risk-neutral case ($770.61).

Figure 11 shows the evolution of the number of impressions, the number of conversions and

the cash spent for a sample execution when one uses the optimal strategy. In the risk-averse

case, the ad trader does not spend evenly throughout the day as in the risk-neutral case.

Instead, he buys more at the beginning because he wants to reduce the risk he faces. In

particular, the ad trader bids higher prices in order to buy inventory at a higher pace at the

beginning, and this results in a higher value for the cash spent on average � this can be seen

on Figure 12, which shows the results of a Monte Carlo simulation (10000 trajectories). The
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Figure 10: Left: the function (c, t) 7→ θ̃c(t). Right: the optimal bidding function (c, t) 7→
b̃∗c(t).

average amount of money spent in the simulation is $768.82, with a standard deviation of

$19.98. The average number of conversions in this case is 4999.58 with a standard deviation

of 0.99 conversions: this is closer to the target than in the risk-neutral case.

Figure 11: Evolution of the number of impressions, the number of conversions, the cash

spent and the bid level for a conversion-based performance contract.
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Figure 12: Monte Carlo simulations for the conversions-based performance contract in the

risk-averse case.

5 Conclusion

In this article we have built a quantitative framework for the pricing and risk-management

of ad-buying services, more speci�cally, in the case of performance-based contracts in real-

time bidding (RTB). Our approach is based on a stochastic model for RTB auctions which

incorporates the main features we encounter in real applications (continuous stream of auc-

tions at random times, second-price auction dynamics, several possible performance goals,

etc.).

Besides the optimization framework (based on stochastic optimal control techniques), the

main contribution of this research paper is the introduction of a rigorous framework for

de�ning and pricing performance-based contracts. Our framework relies on techniques from

�nancial economics, in particular the indi�erence pricing approach, usually applied for the

pricing of contingent claims. Another contribution is the use of Monte Carlo techniques for

measuring risk.

Our approach opens the door to several lines of future research: �nancial and economic works

about performance-based contracts (performance-elasticity of the di�erent model parame-

ters, more sophisticated models, dynamic model parameters, etc.), mathematical research

about numerical analysis and Monte Carlo simulation issues [4, 12], and also research for

the pricing of performance-based contracts when the parameters (or even the model) are

unknown or uncertain � on this topic, reinforcement learning techniques (see [2, 13]) should

be used, see [10].
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