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Introduction



Merton’s portfolio problem

Merton (1969)

• Merton (following Samuelson) built a reference model for optimal

consumption and investment choices.

• Used Hamilton-Jacobi-Bellman (HJB) equation.

• Various settings with closed-form solutions:

• CRRA utility function.

• CARA utility function (raises the question of negative consumption).

• Finite and infinite horizon.

One of Merton’s great successes with the Black-Scholes-Merton formula.

2



Merton’s portfolio problem

Merton (1969)

• Merton (following Samuelson) built a reference model for optimal

consumption and investment choices.

• Used Hamilton-Jacobi-Bellman (HJB) equation.

• Various settings with closed-form solutions:

• CRRA utility function.

• CARA utility function (raises the question of negative consumption).

• Finite and infinite horizon.

One of Merton’s great successes with the Black-Scholes-Merton formula.

2



A vast literature

Many extensions

• Transaction costs

• Taxes

• Labor income

• Stochastic volatility

• Trading constraints

• Habit formation preferences

• Recursive utility

• Partial information

• ...

Several mathematical methods

• HJB equation

• Dual / Martingale method
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Our contribution

Goal

• Introduction of comparison / jealousy / competition in Merton’s

portfolio problem.

• Showing Jean-Michel Lasry an example of MFG Master equation

that could be solved in closed form.

Remark: MFG of controls → not only characterized by a Master

equation.

Literature I knew on competition in optimal investment

• Static model: Guéant, Lasry, Lions, Mean Field Games and

Applications, Paris-Princeton Lectures on Mathematical Finance

2010.

• Dynamic model: Espinosa, Touzi, Optimal Investment under

Relative Performance Concerns, Mathematical Finance, 2015.
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Our contribution

Literature I discovered in August (Discussion with René Carmona

on MFG)

• Lacker, Zariphopoulou, Mean field and n-agent games for optimal

investment under relative performance criteria. Mathematical

Finance, 2017.

• Lacker, Soret, Many-player games of optimal consumption and

investment under relative performance criteria. arXiv 28 May 2019.

Our framemork

• Less general:

• A single common stock (the motivation was a Master equation).

• Agents differ only by their wealth (original MFG framework).

• No N-player game, only MFG.

• More general:

• CARA case (raises the question of negative consumption).

• Recursive utility case (Epstein-Zin/Duffie-Epstein/Duffie-Lions).

5



Our contribution

Literature I discovered in August (Discussion with René Carmona
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The model



Merton’s portfolio problem

Original problem

• Stock: dSt = µStdt + σStdWt .

• Wealth: dXt = (r + θt(µ− r))Xtdt + θtσXtdWt − ctdt.

• Optimization problem:

sup
c,θ

E

[∫ T

0

e−ρtu(ct)dt + εe−ρTu(XT )

]
.

HJB equation

0 = ∂tV − ρV + rx∂xV + sup
c
{u(c)− c∂xV }

+ sup
θ

{
θ(µ− r)x∂xV +

1

2
θ2σ2x2∂2xxV

}
Terminal condition: V (T , x) = εu(x).

6



Merton’s portfolio problem

Original problem

• Stock: dSt = µStdt + σStdWt .

• Wealth: dXt = (r + θt(µ− r))Xtdt + θtσXtdWt − ctdt.

• Optimization problem:

sup
c,θ

E

[∫ T

0

e−ρtu(ct)dt + εe−ρTu(XT )

]
.

HJB equation

0 = ∂tV − ρV + rx∂xV + sup
c
{u(c)− c∂xV }

+ sup
θ

{
θ(µ− r)x∂xV +

1

2
θ2σ2x2∂2xxV

}
Terminal condition: V (T , x) = εu(x).

6



Solution

CARA case u(x) = − 1
γ e
−γx

• Ansatz: V (t, x) = − 1
γ e
−γf (t)x+g(t).

• Resulting equations:

0 = f ′ + rf − f 2, f (T ) = 1.

0 = g ′ − fg + f − f log(f )− ρ− (µ− r)2

2σ2
, g(T ) = log(ε).

• Optimal controls (feedback form):

c∗(t, x) = f (t)x − 1

γ
(log(f (t)) + g(t)) .

M∗(t, x) = θ∗(t, x)x =
µ− r

γσ2f (t)
.
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Solution

CRRA case u(x) = 1
1−γ x

1−γ

• Ansatz: V (t, x) = 1
1−γ f (t)x1−γ .

• Resulting equation (Bernoulli):

f ′ =

(
ρ− (1− γ)

(
r +

(µ− r)2

2γσ2

))
f − γf −

1−γ
γ

with terminal condition f (T ) = ε.

• Optimal controls (feedback form):

c∗(t, x) = f (t)−
1
γ x .

θ∗(t, x) =
µ− r

γσ2
.
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Introducing competition I – the CARA case

The CARA case

• A population of agents with the same preferences (wealth is

distributed).

• A common stock: dSt = µStdt + σStdWt .

• Wealth: dXt = rXtdt + (µ− r)Mtdt + σMtdWt − ctdt.

• Optimization problem:

sup
c,θ

E

[∫ T

0

−e−ρt 1

γ
e−γ(ct−βc t)dt − εe−ρT 1

γ
e−γ(XT−βXT )

]
,

where β ∈ [0, 1) and (c ,X ) designates averages in the population.

MFG approach

• Given dynamics of averages, solve HJB to obtain optimal controls.

• Find dynamics of averages consistent with optimal controls

(fixed-point problem).
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Towards a solution

Dynamics of the averages

c t = c(t,X t).

dX t = µ(t,X t)dt + σ(t,X t)dWt − c(t,X t)dt.

HJB equation

0 = ∂tV − ρV + rx∂xV + sup
c

{
− 1

γ
e−γ(c−βc(t,x)) − c∂xV

}
+ sup

M

{
(µ− r)M∂xV +

1

2
σ2M2∂2xxV + σσ(t, x)M∂2xxV

}
+ (µ(t, x)− c(t, x))∂xV +

1

2
σ(t, x)2∂2xxV

Terminal condition: V (T , x , x) = − ε
γ e
−γ(x−βx).
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Optimal controls and equilibrium conditions

• Ansatz: V (t, x , x) = − 1
γ e
−γf (t)(x−βx)+g(t).

• Optimal controls given averages (feedback form):

c∗(t, x , x) = f (t)(x − βx) + βc(t, x)− 1

γ
(log(f (t)) + g(t)) .

M∗(t, x , x) =
µ− r

γσ2f (t)
+ β

σ(t, x)

σ
.

• Equilibrium equations:

c(t, x) = f (t)x − 1

(1− β)γ
(log(f (t)) + g(t)) .

σ(t, x) =
µ− r

(1− β)γσf (t)
.

µ(t, x) = rx +
(µ− r)2

(1− β)γσ2f (t)
.
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Solution

• Resulting equations (exactly the same):

0 = f ′ + rf − f 2, f (T ) = 1.

0 = g ′ − fg + f − f log(f )− ρ− (µ− r)2

2σ2
, g(T ) = log(ε).

• Optimal controls (feedback form):

c∗(t, x) = f (t)x − 1

(1− β)γ
(log(f (t)) + g(t)) .

M∗(t, x) = θ∗(t, x)x =
µ− r

(1− β)γσ2f (t)
.

Everything works as if the risk aversion γ had been replaced by (1− β)γ:

agents take more risk with competition in the CARA case!
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Introducing competition II – the CRRA case

The CRRA case

• A population of agents with the same preferences (wealth is

distributed).

• A common stock: dSt = µStdt + σStdWt .

• Wealth: dXt = (r + θt(µ− r))Xtdt + σθtXtdWt − ctdt.

• Optimization problem:

sup
c,θ

E

∫ T

0

e−ρt
1

1− γ

(
ct

cβt

)1−γ

dt + εe−ρT
1

1− γ

(
XT

X
β

T

)1−γ
 ,

where β ∈ [0, 1] and (c ,X ) designates averages in the population.

Remark: the averages are arithmetic averages, not geometric as in

Lacker-Zariphopoulou and Lacker-Soret. This is made possible by the

fact that agents have the same preferences and invest in the same asset.

As above we use a MFG approach.
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Toward a solution

Dynamics of the averages

c t = α(t)X t .

dX t = µX tdt + σX tdWt − α(t)X tdt.

HJB equation

0 = ∂tV − ρV + rx∂xV + sup
c

{
1

1− γ

(
c

αβxβ

)1−γ

− c∂xV

}

+ sup
θ

{
θ(µ− r)x∂xV +

1

2
θ2σ2x2∂2xxV + θσσxx∂2xxV

}
+ (µ− α(t))x∂xV +

1

2
σ2x2∂2xxV

Terminal condition: V (T , x , x) = ε
1−γ

(
x
xβ

)1−γ
.
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Optimal controls and equilibrium conditions

• Ansatz: V (t, x , x) = 1
1−γ f (t)

(
x
xβ

)1−γ
.

• Optimal controls given averages (feedback form):

c∗(t, x , x) = α(t)β(1− 1
γ )f (t)−

1
γ x .

θ∗(t, x , x) =
µ− r

γσ2
− β 1− γ

γ

σ(t, x)

σ
.

• Equilibrium equations:

α(t) = f (t)−
1

γ+β(1−γ) .

σ =
µ− r

(γ + β(1− γ))σ
.

µ = r +
(µ− r)2

(γ + β(1− γ))σ2
.
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Solution

• Resulting equation (Bernoulli):

f ′(t) =

(
ρ− (1− γ)(1− β)

(
r +

(µ− r)2

2(γ + β(1− γ))σ2

))
f (t)

− (γ + β(1− γ)) f (t)−
(1−β)(1−γ)
γ+β(1−γ) .

with terminal condition f (T ) = ε.

• Optimal controls (feedback form):

c∗(t, x) = f (t)−
1

γ+β(1−γ) x .

θ∗(t, x) =
µ− r

(γ + β(1− γ))σ2
.

Everything works as if the risk aversion γ had been replaced by

γ + β(1− γ) = β + (1− β)γ: competition makes agents behave more

like if they had a log utility function.
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Recursive utility

Epstein-Zin / Kreps-Porteus

• Recursive utility to disentangle risk aversion γ and intertemporal

elasticity of substitution (IES) ψ (CRRA case: ψ = 1
γ ).

• Discrete-time version in the no-competition case:

Ut =

ρc1− 1
ψ

t + (1− ρ)E
[
U1−γ
t+1

] 1− 1
ψ

1−γ

 1

1− 1
ψ

Equivalent aggregator

The continuous-time counterpart has been studied by Duffie-Epstein /

Duffie-Lions who obtained an equivalent “aggregator”:

(c ,V ) 7→ ρ

1− 1
ψ

c1−
1
ψ − ((1− γ)V )

1− 1
ψ

1−γ

((1− γ)V )
1− 1
ψ

1−γ −1
.
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Introducing competition III – the recursive utility case

Recursive utility formulation

• A population of agents with the same preferences (wealth is

distributed).

• A common stock: dSt = µStdt + σStdWt .

• Wealth: dXt = (r + θt(µ− r))Xtdt + σθtXtdWt − ctdt.

• Optimization problem:

Vt = sup
c,θ

E

[∫ T

t

ρ

1− 1
ψ

(
cs
cβs

)1− 1
ψ − ((1− γ)Vs)

1− 1
ψ

1−γ

((1− γ)Vs)
1− 1
ψ

1−γ −1
ds

+
(ρε)

1−γ
1− 1
ψ

1− γ

(
XT

X
β

T

)1−γ ]
,

where β ∈ [0, 1] and (c ,X ) designates averages in the population.
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Toward a solution

Dynamics of the averages

c t = α(t)X t .

dX t = µX tdt + σX tdWt − α(t)X tdt.

HJB equation

0 = ∂tV + rx∂xV + sup
c

 ρ

1− 1
ψ

(
c

α(t)βxβ

)1− 1
ψ

((1− γ)V )
1− 1
ψ

1−γ −1
− c∂xV


− ρ

1− γ
1− 1

ψ

V + sup
θ

{
θ(µ− r)x∂xV +

1

2
θ2σ2x2∂2xxV + θσσxx∂2xxV

}
+ (µ− α(t))x∂xV +

1

2
σ2x2∂2xxV

Terminal condition: V (T , x , x) = (ρε)

1−γ
1− 1
ψ

1−γ
(

x
xβ

)1−γ
.
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Optimal controls and equilibrium conditions

• Ansatz: V (t, x , x) = 1
1−γ f (t)

(
x
xβ

)1−γ
.

• Optimal controls given averages (feedback form):

c∗(t, x , x) = ρψα(t)β(1−ψ)f (t)
1−ψ
1−γ x .

θ∗(t, x , x) =
µ− r

γσ2
− β 1− γ

γ

σ(t, x)

σ
.

• Equilibrium equations:

α(t) = ρ

1
1
ψ

+β(1− 1
ψ ) f (t)

−
1− 1
ψ

1−γ
1

1
ψ

+β(1− 1
ψ

) .

σ =
µ− r

(γ + β(1− γ))σ
.

µ = r +
(µ− r)2

(γ + β(1− γ))σ2
.
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Solution (valid for instance if γ < 1 < ψ or ψ < 1 < γ)

• Resulting equation (Bernoulli):

f ′(t) =

(
1− γ
1− 1

ψ

ρ− (1− γ)(1− β)

(
r +

(µ− r)2

2(γ + β(1− γ))σ2

))
f (t)

− 1− γ
1− 1

ψ

(
1

ψ
+ β

(
1− 1

ψ

))
ρ

1
1
ψ

+β(1− 1
ψ ) f (t)

1−
1− 1
ψ

1−γ
1

1
ψ

+β(1− 1
ψ ) .

with terminal condition f (T ) = (ρε)
1−γ
1− 1
ψ .

• Optimal controls (feedback form):

c∗(t, x) = ρ

1
1
ψ

+β(1− 1
ψ ) f (t)

−
1− 1
ψ

1−γ
1

1
ψ

+β(1− 1
ψ

) x .

θ∗(t, x) =
µ− r

(γ + β(1− γ))σ2
.
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Solution (valid for instance if γ < 1 < ψ or ψ < 1 < γ)

Different writing

If γβ = γ + β(1− γ) and 1
ψβ

= 1
ψ + β

(
1− 1

ψ

)
then

f ′(t) =

(
1− γβ
1− 1

ψβ

ρ− (1− γβ)

(
r +

(µ− r)2

2γβσ2

))
f (t)

− 1− γβ
1− 1

ψβ

1

ψβ
ρψβ f (t)

1−
1− 1
ψβ

1−γβ
ψβ
, f (T ) = (ρε)

1−γβ
1− 1
ψβ .

Optimal controls (feedback form):

c∗(t, x) = ρψβ f (t)
−

1− 1
ψβ

1−γβ
ψβ

x , θ∗(t, x) =
µ− r

γβσ2
.

Everything works as if the risk aversion γ and the IES ψ had been

replaced by γβ and ψβ . Competition makes agents behave more like if

they had a log utility function in terms of risk and IES equal to 1.
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Conclusion

What we found

• Closed-form solutions for Merton’s problem with competition in the

CARA, CRRA, and recursive utility cases.

• Examples of MFG of controls with common noise that could be

solved in closed form.

What’s next

Generalizing Lacker-Soret (with different agent types) in the case of

Epstein-Zin recursive utility:

Olivier Guéant, Competition in Merton’s problem: the recursive utility

case.
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Questions

Thanks for your attention.

Questions.
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