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Introduction



Merton’s portfolio problem

Merton (1969)
e Merton (following Samuelson) built a reference model for optimal
consumption and investment choices.
e Used Hamilton-Jacobi-Bellman (HJB) equation.
e Various settings with closed-form solutions:

o CRRA utility function.
e CARA utility function (raises the question of negative consumption).

e Finite and infinite horizon.
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A vast literature

Many extensions
e Transaction costs
e Taxes
e Labor income
e Stochastic volatility
e Trading constraints
e Habit formation preferences
e Recursive utility

e Partial information
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Several mathematical methods
e HJB equation

e Dual / Martingale method




Our contribution

Goal

e Introduction of comparison / jealousy / competition in Merton's
portfolio problem.

e Showing Jean-Michel Lasry an example of MFG Master equation
that could be solved in closed form.
Remark: MFG of controls — not only characterized by a Master
equation.
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Literature | knew on competition in optimal investment
e Static model: Guéant, Lasry, Lions, Mean Field Games and
Applications, Paris-Princeton Lectures on Mathematical Finance
2010.
e Dynamic model: Espinosa, Touzi, Optimal Investment under
Relative Performance Concerns, Mathematical Finance, 2015.
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Our framemork

e |ess general:
e A single common stock (the motivation was a Master equation).
e Agents differ only by their wealth (original MFG framework).
e No N-player game, only MFG.

e More general:
e CARA case (raises the question of negative consumption).
e Recursive utility case (Epstein-Zin/Duffie-Epstein/Duffie-Lions).
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Merton’s portfolio problem

Original problem
(] StOCk: dSt = /Lstdt aF UStth.
o Wealth: dXt = (r aF Qt(,u — r))Xtdt aF gtO'Xtth — Ctdt.

e Optimization problem:

supE
c,0

.
/ e Ptu(cy)dt + ee T u(X71)
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CARA case u(x) = —ze ¥

_1
5
e Ansatz: V(t,x) = _%e—’yf(t)ﬂrg(t)_

e Resulting equations:

0 = f'+rf—f f(T)=1

(u—r)?
202

0 = g —fg+f—flog(f)—p— g(T) = log(e).

e Optimal controls (feedback form):

c(tx) = F(E)x— % (log(£(1)) + & (1)) .

* o * . H—=r
M*(t,x) = 9(t,x)x—702f(t).




CRRA case u(x) = {2-x'77
e Ansatz: V/(t, x) = = ()X,

e Resulting equation (Bernoulli):

with terminal condition f(T) = e.

e Optimal controls (feedback form):

cH(t,x) = f(t) Tx.
0" (t,x) = =
Yo




Introducing competition | — the CARA case

The CARA case

e A population of agents with the same preferences (wealth is
distributed).

e A common stock: dS; = uS;dt + 0S;dW;.
o Wealth: dX; = rXidt + (1 — r)M;dt + o M, dW; — c.dt.

e Optimization problem:
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c,0 0 i Y

where 3 € [0,1) and (¢, X) designates averages in the population.
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where 3 € [0,1) and (T, X) designates averages in the population.

MFG approach
e Given dynamics of averages, solve HJB to obtain optimal controls.

e Find dynamics of averages consistent with optimal controls

(fixed-point problem).




Towards a solution

Dynamics of the averages

c: = ¢ ).
A(

t7 Yt
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HJB equation
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Optimal controls and equilibrium conditions

e Ansatz: V/(t,x,X) = _%e—vf(t)(X—BYHg(t)_
e Optimal controls given averages (feedback form):

1

c*(t,x,x) = f(t)(x — Bx)+ Be(t,X) 7(Iog(f(t))+g(t)).

M*(t,x,%X) = W$“%+ﬂd2”.

e Equilibrium equations:

e _ 1

c(t,x) = f(t)x—m(log(f(t)Hg(t))-
i = n—r

N i)

at,x) = rx+ (e = r)”

(1 - B)yo?f(t)
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e Resulting equations (exactly the same):
0 = f+rf—f, f(T)=1L1
0 = &g+ F—rlog(f)—p— Il g(7) = log(e)
e Optimal controls (feedback form):
Cex) = A(O)x— g (oa(f(1) + (1),
* * —r
M*(t,x) = 0°(tx)x = W%W.
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Introducing competition Il — the CRRA case

The CRRA case

e A population of agents with the same preferences (wealth is
distributed).

e A common stock: dS; = uS;dt + 0S;dW;.
e Wealth: dX; = (r + 0:(u — r))Xedt + 00 X dW; — c,dt.

e Optimization problem:

T 1—y 1=y
1 1 X
supE / e Pt (C;) dt +ee PT j; ,
co |Jo 1=v\¢ 1=\ X7}

where 8 € [0,1] and (T, X) designates averages in the population.

Remark: the averages are arithmetic averages, not geometric as in
Lacker-Zariphopoulou and Lacker-Soret. This is made possible by the

fact that agents have the same preferences and invest in the same asset.
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Remark: the averages are arithmetic averages, not geometric as in
Lacker-Zariphopoulou and Lacker-Soret. This is made possible by the
fact that agents have the same preferences and invest in the same asset.

v

As above we use a MFG approach.
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Toward a solution

Dynamics of the averages

Et = Oé(t)yt
dX, = ﬂytdt + X dW; — a(t)ytdt.
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Toward a solution

Dynamics of the averages

= a(t)X;.

Ct
dX. aX.dt + X dW; — a(t)X,dt.

HJB equation

1 c \'77
0 = 8tV—pV+rx8XV+SLip{M(W> —Cax\/}

1
+ sup {9(;1 —r)x0xV + 59202X235XV + 9UUXX<9§XV}
0

1
+ (7 — a(t))xoxV + §E2Y28)2(—XV

Terminal condition: V(T x,%) = 1< ()" .
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Optimal controls and equilibrium conditions

e Ansatz: V(t,x,X) = = — f(t ) (2 )1 7
e Optimal controls given averages (feedback form):
(%) = a(t)’ ()7 x.
0*(t,x,X) = ”_; _ﬁl_vg(t’x).
Yo 7 o
e Equilibrium equations:
a(t) = f(t) 7=,
_ B=r
g = T 0
(v +B(1 =)o
I () S
(v +B(1 —))o?
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e Resulting equation (Bernoulli):

e = (p—u—wxl—5>Q~t%?j§@?;»ﬁ))fu)

— (7 + B(L =) F(5)” .

with terminal condition f(T) = .

e Optimal controls (feedback form):

c(t,x) = f(r) FAx.

* o n—=r
69 = GrEE=er
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Recursive utility
Epstein-Zin / Kreps-Porteus

e Recursive utility to disentangle risk aversion v and intertemporal
elasticity of substitution (IES) 1 (CRRA case: ¢ = %)

e Discrete-time version in the no-competition case:

17



Recursive utility
Epstein-Zin / Kreps-Porteus

e Recursive utility to disentangle risk aversion v and intertemporal
elasticity of substitution (IES) 1 (CRRA case: ¢ = %)

e Discrete-time version in the no-competition case:

1—
U = |pc,

el

l—u% 1,11
1] T
+(1-p)E Ui
Equivalent aggregator

(c,V)—~

P

The continuous-time counterpart has been studied by Duffie-Epstein /
Duffie-Lions who obtained an equivalent “aggregator”
1—

<=

v — (-
1— 1

(L-pv)=
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Introducing competition 11l — the recursive utility case

Recursive utility formulation

e A population of agents with the same preferences (wealth is
distributed).

e A common stock: dS; = uS;dt + oS;dW;.
o Wealth: dX; = (r + 0:(n — r))Xedt + 00 X dW; — ¢, dt.

e Optimization problem:

Vi =supE
c,0

N =

T, (8) T-@-pw

/ 11 2 " ds
N (R AL

1—ny 1
+(P€)l_% XT !
v !
v \X2

where 3 € [0,1] and (¢, X) designates averages in the population.
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Toward a solution

Dynamics of the averages

c a(t)X;.
dX: = [Xidt+oX.dW; — a(t)X,dt.

ﬁ
g
I
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Toward a solution

Dynamics of the averages

c a(t)X;.
dX: = [Xidt+oX.dW; — a(t)X,dt.

ﬁ
g
I

HJB equation

()
0tV + rx0V + sup p o o(t)x — coV

@

o
I

1— 1

RN CE 0k

1
P Y V + sup {0(;1 — r)xoxV + 50202X28)2<XV 4 900XX8§XV}
-1 p

1
+ (7 — oft))x0cV + 552?28f7v

Terminal condition: V/(T,x,x) = £ ()77,
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Optimal controls and equilibrium conditions

e Ansatz: V(t,x,X) = ﬁf(t) (;%)1_7.

e Optimal controls given averages (feedback form):

c*(t,x,x) = pwa(t)ﬂ(lfi/))f(t)gx.
= 1—~a(t,x

0*(t,x,x) = L zf_ﬁ ya(t,x)
Yo ol o

e Equilibrium equations:

1
1 1-5

oft) = p3 P B () T TD,
T = =t 7
(v+B(1—7))o
— A2
I rp =1
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Solution (valid for instance if y <1 < ¢ or ¢ <1< 7)

e Resulting equation (Bernoulli):

F(t) = ( 1: Tp—(1-7)(1-B) (f e ‘l‘(/;(_l r_) v))02)> 1

(
1o L L TH(oD) 1’gﬁ
_1_g<w+ﬂ<1—w>)pw( w)f(t) 1ip( w)

c(tx) = p¥?U By T

6% (t,x) = S
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Solution (valid for instance if y <1 < ¢ or ¢ <1< 7)

Different writing

Iffyﬂzv—&-ﬁ(l—fy)andw%:w—i—b’(l—f) then

)2
f'(r)—(ll_”f’p (=) (r+ % ))>f(r)

2
Vs 2750

1— -1 1-vg

1-— 1 — 2By ==
- R ()T, A(T) = ()
1/J/3¢

Optimal controls (feedback form):

_ 1

11—
__ ¥ _
C*(t,X) = pwa f(t) s d)ﬁxv 0*(t,X) - :Bo?r'
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Conclusion

What we found
e Closed-form solutions for Merton’s problem with competition in the
CARA, CRRA, and recursive utility cases.

e Examples of MFG of controls with common noise that could be
solved in closed form.
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Conclusion

What we found

e Closed-form solutions for Merton’s problem with competition in the
CARA, CRRA, and recursive utility cases.

e Examples of MFG of controls with common noise that could be
solved in closed form.

What's next

Generalizing Lacker-Soret (with different agent types) in the case of
Epstein-Zin recursive utility:

Olivier Guéant, Competition in Merton's problem: the recursive utility
case.

23



Thanks for your attention.

Questions.
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