Continuous-time optimal control on discrete spaces. Applications to inventory management in commerce and finance

Pr. Olivier Guéant (Université Paris 1 Panthéon-Sorbonne and ENSAE) Spring 2021

Introduction

 Undergraduate and graduate studies: Mathematics / Computer Science / Economics (Ecole Normale Supérieure, Paris + ENSAE, Paris, + Harvard Univ.)

- Undergraduate and graduate studies: Mathematics / Computer Science / Economics (Ecole Normale Supérieure, Paris + ENSAE, Paris, + Harvard Univ.)
- PhD (Université Paris Dauphine) on Mean Field Games.

- Undergraduate and graduate studies: Mathematics / Computer Science / Economics (Ecole Normale Supérieure, Paris + ENSAE, Paris, + Harvard Univ.)
- PhD (Université Paris Dauphine) on Mean Field Games.
- First jobs in banks and in the start up I created with my PhD advisors.

• Academic career: Assistant Professor at Univ. Paris 7 in Applied Mathematics (Numerical analysis).

- Academic career: Assistant Professor at Univ. Paris 7 in Applied Mathematics (Numerical analysis).
- Current position: Full Professor of Applied Mathematics at Université Paris 1 Panthéon Sorbonne and Adjunct Professor of Finance at ENSAE.

- Academic career: Assistant Professor at Univ. Paris 7 in Applied Mathematics (Numerical analysis).
- Current position: Full Professor of Applied Mathematics at Université Paris 1 Panthéon Sorbonne and Adjunct Professor of Finance at ENSAE.
- Research: initially in mean field games, then in Quantitative Finance.

Greatest common divisor: optimal control theory

Optimal control theory

• A theory to tackle dynamic optimization problems.

- A theory to tackle dynamic optimization problems.
- Linked to the calculus of variations (18th century) but a major achievement of the 20th century (Bellman equations, viscosity solutions, etc.).

- A theory to tackle dynamic optimization problems.
- Linked to the calculus of variations (18th century) but a major achievement of the 20th century (Bellman equations, viscosity solutions, etc.).
- Used in a lot of fields: aerospace, robotics, finance, etc.

- A theory to tackle dynamic optimization problems.
- Linked to the calculus of variations (18th century) but a major achievement of the 20th century (Bellman equations, viscosity solutions, etc.).
- Used in a lot of fields: aerospace, robotics, finance, etc.
- Very hot recently: related to reinforcement learning (see DeepMind).

Optimal control theory

- A theory to tackle dynamic optimization problems.
- Linked to the calculus of variations (18th century) but a major achievement of the 20th century (Bellman equations, viscosity solutions, etc.).
- Used in a lot of fields: aerospace, robotics, finance, etc.
- Very hot recently: related to reinforcement learning (see DeepMind).

Different frameworks

Optimal control theory

- A theory to tackle dynamic optimization problems.
- Linked to the calculus of variations (18th century) but a major achievement of the 20th century (Bellman equations, viscosity solutions, etc.).
- Used in a lot of fields: aerospace, robotics, finance, etc.
- Very hot recently: related to reinforcement learning (see DeepMind).

Different frameworks

• Discrete-time with discrete/continuous-state space: recursive equations (often untractable).

Optimal control theory

- A theory to tackle dynamic optimization problems.
- Linked to the calculus of variations (18th century) but a major achievement of the 20th century (Bellman equations, viscosity solutions, etc.).
- Used in a lot of fields: aerospace, robotics, finance, etc.
- Very hot recently: related to reinforcement learning (see DeepMind).

Different frameworks

- Discrete-time with discrete/continuous-state space: recursive equations (often untractable).
- Continuous-time with continuous state space: partial differential equations (sometimes very technical, e.g. viscosity solutions).

Optimal control theory

- A theory to tackle dynamic optimization problems.
- Linked to the calculus of variations (18th century) but a major achievement of the 20th century (Bellman equations, viscosity solutions, etc.).
- Used in a lot of fields: aerospace, robotics, finance, etc.
- Very hot recently: related to reinforcement learning (see DeepMind).

Different frameworks

- Discrete-time with discrete/continuous-state space: recursive equations (often untractable).
- Continuous-time with continuous state space: partial differential equations (sometimes very technical, e.g. viscosity solutions).
- Continuous-time with discrete state space: ordinary differential equations (less technical, and reveals the main ideas).

• Introduction of the modelling framework and presentation of the main issues.

- Introduction of the modelling framework and presentation of the main issues.
- Motivation with a toy example from (re)commerce.

- Introduction of the modelling framework and presentation of the main issues.
- Motivation with a toy example from (re)commerce.
- Derivation of the main results.

- Introduction of the modelling framework and presentation of the main issues.
- Motivation with a toy example from (re)commerce.
- Derivation of the main results.

In the next lecture

• Derivation of the main results (continued).

- Introduction of the modelling framework and presentation of the main issues.
- Motivation with a toy example from (re)commerce.
- Derivation of the main results.

In the next lecture

- Derivation of the main results (continued).
- The specific case of entropic costs.

- Introduction of the modelling framework and presentation of the main issues.
- Motivation with a toy example from (re)commerce.
- Derivation of the main results.

In the next lecture

- Derivation of the main results (continued).
- The specific case of entropic costs.
- Discussion of applications to market making issues.

Vocabulary

Vocabulary

• Nodes or vertices: $\mathcal{I} = \{1, \dots, N\}.$

Vocabulary

- Nodes or vertices: $\mathcal{I} = \{1, \dots, N\}.$
- Edges (directed edges) or links: for each *i* ∈ *I*, *V*(*i*) ⊂ *I* \ {*i*} is the set of nodes *j* for which a directed edge exists from *i* to *j*.

Vocabulary

- Nodes or vertices: $\mathcal{I} = \{1, \dots, N\}.$
- Edges (directed edges) or links: for each i ∈ I, V(i) ⊂ I \ {i} is the set of nodes j for which a directed edge exists from i to j.
- Transition probabilities in continuous time are described by a collection of feedback control functions $(\lambda_t(i, \cdot))_{i \in \mathcal{I}}$ where $\lambda_t(i, \cdot) : \mathcal{V}(i) \to \mathbb{R}_+$.

Vocabulary

- Nodes or vertices: $\mathcal{I} = \{1, \dots, N\}.$
- Edges (directed edges) or links: for each *i* ∈ *I*, *V*(*i*) ⊂ *I* \ {*i*} is the set of nodes *j* for which a directed edge exists from *i* to *j*.
- Transition probabilities in continuous time are described by a collection of feedback control functions (λ_t(i, ·))_{i∈I} where λ_t(i, ·) : V(i) → ℝ₊.

Main assumptions

• On the graph: it is connected, i.e. there is a path from any point to any other point.

Vocabulary

- Nodes or vertices: $\mathcal{I} = \{1, \dots, N\}.$
- Edges (directed edges) or links: for each i ∈ I, V(i) ⊂ I \ {i} is the set of nodes j for which a directed edge exists from i to j.
- Transition probabilities in continuous time are described by a collection of feedback control functions (λ_t(i, ·))_{i∈I} where λ_t(i, ·) : V(i) → ℝ₊.

Main assumptions

- On the graph: it is connected, i.e. there is a path from any point to any other point.
- On transition probabilities: they are chosen by an agent. He/she cannot create edges.

An agent moving on the graph

An agent moving on the graph

• Time interval: [0, T]

An agent moving on the graph

- Time interval: [0, *T*]
- If at time t the agent is at node/state i, then, over [t, t + dt]:
 - he/she gets a payoff h(i)dt
 - he/she pays a cost $c\left(i, (\lambda_t(i, j))_{j \in \mathcal{V}(i)}\right) dt$

- Time interval: [0, *T*]
- If at time t the agent is at node/state i, then, over [t, t + dt]:
 - he/she gets a payoff h(i)dt
 - he/she pays a cost $c\left(i, (\lambda_t(i, j))_{j \in \mathcal{V}(i)}\right) dt$

$$\Rightarrow L\left(i, (\lambda_t(i,j))_{j \in \mathcal{V}(i)}\right) = c\left(i, (\lambda_t(i,j))_{j \in \mathcal{V}(i)}\right) - h(i).$$

- Time interval: [0, T]
- If at time t the agent is at node/state i, then, over [t, t + dt]:
 - he/she gets a payoff h(i)dt
 - he/she pays a cost $c\left(i, (\lambda_t(i, j))_{j \in \mathcal{V}(i)}\right) dt$

$$\Rightarrow L\left(i, (\lambda_t(i,j))_{j \in \mathcal{V}(i)}\right) = c\left(i, (\lambda_t(i,j))_{j \in \mathcal{V}(i)}\right) - h(i).$$

Remark: L can take the value $+\infty$.

- Time interval: [0, *T*]
- If at time t the agent is at node/state i, then, over [t, t + dt]:
 - he/she gets a payoff h(i)dt
 - he/she pays a cost $c\left(i, (\lambda_t(i, j))_{j \in \mathcal{V}(i)}\right) dt$

$$\Rightarrow L\left(i, (\lambda_t(i,j))_{j \in \mathcal{V}(i)}\right) = c\left(i, (\lambda_t(i,j))_{j \in \mathcal{V}(i)}\right) - h(i).$$

Remark: L can take the value $+\infty$.

• If at time T the agent is at node/state i: final payoff g(i)

- Time interval: [0, *T*]
- If at time t the agent is at node/state i, then, over [t, t + dt]:
 - he/she gets a payoff h(i)dt
 - he/she pays a cost $c\left(i, (\lambda_t(i,j))_{j\in\mathcal{V}(i)}
 ight) dt$

$$\Rightarrow L\left(i, (\lambda_t(i,j))_{j \in \mathcal{V}(i)}\right) = c\left(i, (\lambda_t(i,j))_{j \in \mathcal{V}(i)}\right) - h(i).$$

Remark: L can take the value $+\infty$.

- If at time T the agent is at node/state i: final payoff g(i)
- Discount rate $r \ge 0$.

State process

 $(X_s^{t,i,\lambda})_{s \in [t,T]}$: continuous-time Markov chain on the graph starting from node *i* at time *t*, with instantaneous transition probabilities given by λ .

State process

 $(X_{s}^{t,i,\lambda})_{s \in [t,T]}$: continuous-time Markov chain on the graph starting from node *i* at time *t*, with instantaneous transition probabilities given by λ .

Goal of the agent

Maximizing over the intensities the objective criterion

$$\mathbb{E}\left[-\int_{0}^{T} e^{-rt} L\left(X_{t}^{0,i,\lambda},\left(\lambda_{t}\left(X_{t}^{0,i,\lambda},j\right)\right)_{j\in\mathcal{V}\left(X_{t}^{0,i,\lambda}\right)}\right) dt + e^{-rT}g\left(X_{T}^{0,i,\lambda}\right)\right]$$

State process

 $(X_s^{t,i,\lambda})_{s \in [t,T]}$: continuous-time Markov chain on the graph starting from node *i* at time *t*, with instantaneous transition probabilities given by λ .

Goal of the agent

Maximizing over the intensities the objective criterion

$$\mathbb{E}\left[-\int_{0}^{T} e^{-rt} L\left(X_{t}^{0,i,\lambda},\left(\lambda_{t}\left(X_{t}^{0,i,\lambda},j\right)\right)_{j\in\mathcal{V}\left(X_{t}^{0,i,\lambda}\right)}\right) dt + e^{-rT}g\left(X_{T}^{0,i,\lambda}\right)\right]$$

Remark: To be rigorous, we impose λ such that $t \mapsto \lambda_t(i,j) \in L^1(0,T)$.

Main mathematical problems

• Under what conditions do there exist optimal controls / optimal intensities?

- Under what conditions do there exist optimal controls / optimal intensities?
- How do you compute them if they exist?

- Under what conditions do there exist optimal controls / optimal intensities?
- How do you compute them if they exist?

Asymptotics

- Under what conditions do there exist optimal controls / optimal intensities?
- How do you compute them if they exist?

Asymptotics

• What happens when $T \to \infty$ if r > 0?

- Under what conditions do there exist optimal controls / optimal intensities?
- How do you compute them if they exist?

Asymptotics

• What happens when $T \to \infty$ if r > 0? \to stationary problem.

- Under what conditions do there exist optimal controls / optimal intensities?
- How do you compute them if they exist?

Asymptotics

- What happens when $T \to \infty$ if r > 0? \to stationary problem.
- What happens when $T \to \infty$ if r = 0?

- Under what conditions do there exist optimal controls / optimal intensities?
- How do you compute them if they exist?

Asymptotics

- What happens when $T \to \infty$ if r > 0? \to stationary problem.
- What happens when $T \to \infty$ if $r = 0? \to$ ergodic problem.

• Guéant, Manziuk (2020). Optimal control on graphs: existence, uniqueness, and long-term behavior. ESAIM COCV.

- Guéant, Manziuk (2020). Optimal control on graphs: existence, uniqueness, and long-term behavior. ESAIM COCV.
- Guéant (2021). Optimal control on finite graphs: a reference case.

- Guéant, Manziuk (2020). Optimal control on graphs: existence, uniqueness, and long-term behavior. ESAIM COCV.
- Guéant (2021). Optimal control on finite graphs: a reference case.

On applications to market making

- Guéant, Manziuk (2020). Optimal control on graphs: existence, uniqueness, and long-term behavior. ESAIM COCV.
- Guéant (2021). Optimal control on finite graphs: a reference case.

On applications to market making

 Guéant, Lehalle, Fernandez-Tapia (2013). Dealing with the inventory risk: a solution to the market making problem. MAFE.

- Guéant, Manziuk (2020). Optimal control on graphs: existence, uniqueness, and long-term behavior. ESAIM COCV.
- Guéant (2021). Optimal control on finite graphs: a reference case.

On applications to market making

- Guéant, Lehalle, Fernandez-Tapia (2013). Dealing with the inventory risk: a solution to the market making problem. MAFE.
- Guéant (2017). Optimal market making. AMF

On applications to market making

On applications to market making

And of course

Motivation / Example: a toy model of commerce / recommerce

The toy problem of a platform of (re)commerce

• We consider a book bought and sold by a platform.

- We consider a book bought and sold by a platform.
- At time *t*, the platform proposes:

- We consider a book bought and sold by a platform.
- At time *t*, the platform proposes:
 - to buy at price $P \delta_t^b$

- We consider a book bought and sold by a platform.
- At time *t*, the platform proposes:
 - to buy at price $P \delta_t^b$ (if the inventory is < Q),

- We consider a book bought and sold by a platform.
- At time *t*, the platform proposes:
 - to buy at price $P \delta_t^b$ (if the inventory is < Q),
 - to sell at price $P + \delta_t^s$

- We consider a book bought and sold by a platform.
- At time *t*, the platform proposes:
 - to buy at price $P \delta_t^b$ (if the inventory is < Q),
 - to sell at price $P + \delta_t^s$ (if the inventory is > 0).

- We consider a book bought and sold by a platform.
- At time t, the platform proposes:
 - to buy at price $P \delta_t^b$ (if the inventory is < Q),
 - to sell at price $P + \delta_t^s$ (if the inventory is > 0).
- The probability of trades over [t, t + dt] are:
 - $\Lambda^b(\delta^b_t)dt$ for a buy trade (Λ^b decreasing),
 - $\Lambda^{s}(\delta_{t}^{s})dt$ for a sell trade (Λ^{s} decreasing).

- We consider a book bought and sold by a platform.
- At time t, the platform proposes:
 - to buy at price $P \delta_t^b$ (if the inventory is < Q),
 - to sell at price $P + \delta_t^s$ (if the inventory is > 0).
- The probability of trades over [t, t + dt] are:
 - $\Lambda^b(\delta^b_t)dt$ for a buy trade (Λ^b decreasing),
 - $\Lambda^{s}(\delta_{t}^{s})dt$ for a sell trade (Λ^{s} decreasing).
- The cost of holding an inventory q_t over [t, t + dt] is $c(q_t)dt$ (where c is increasing).

Variables

Variables

Denoting by N^b and N^s the point processes of "buys" and "sells" we have:

Variables

Denoting by N^b and N^s the point processes of "buys" and "sells" we have:

• the inventory $(q_t)_t$ verifies $q_t = N_t^b - N_t^s$.

Variables

Denoting by N^b and N^s the point processes of "buys" and "sells" we have:

- the inventory $(q_t)_t$ verifies $q_t = N_t^b N_t^s$.
- the money on the cash account $(Z_t)_t$ verifies:

 $dZ_t = -(P - \delta^b_t)dN^b_t + (P + \delta^s_t)dN^s_t = -Pdq_t + \delta^b_t dN^b_t + \delta^s_t dN^s_t.$

Variables

Denoting by N^b and N^s the point processes of "buys" and "sells" we have:

- the inventory $(q_t)_t$ verifies $q_t = N_t^b N_t^s$.
- the money on the cash account $(Z_t)_t$ verifies:

$$dZ_t = -(P - \delta_t^b)dN_t^b + (P + \delta_t^s)dN_t^s = -Pdq_t + \delta_t^bdN_t^b + \delta_t^sdN_t^s$$

Optimization problem

Maximizing

$$\mathbb{E}\left[Z_{T} + Pq_{T} - \int_{0}^{T} c(q_{t})dt\right] = \mathbb{E}\left[\int_{0}^{T} \delta_{t}^{b} dN_{t}^{b} + \delta_{t}^{s} dN_{t}^{s} - c(q_{t})dt\right]$$
$$= \mathbb{E}\left[\int_{0}^{T} \left(\delta_{t}^{b} \Lambda^{b}(\delta_{t}^{b}) + \delta_{t}^{s} \Lambda^{s}(\delta_{t}^{s}) - c(q_{t})\right) dt\right], \qquad \lambda_{t}^{b/s} = \Lambda^{b/s}(\delta_{t}^{b/s})$$
$$= \mathbb{E}\left[\int_{0}^{T} \left(\left(\Lambda^{b}\right)^{-1} (\lambda_{t}^{b})\lambda_{t}^{b} + (\Lambda^{s})^{-1} (\lambda_{t}^{s})\lambda_{t}^{s} - c(q_{t})\right) dt\right]$$

• The graph

• No discount rate.

- No discount rate.
- No final payoff.

- No discount rate.
- No final payoff.
- The function $L(\cdot, \cdot)$:

- No discount rate.
- No final payoff.
- The function $L(\cdot, \cdot)$:
 - $L(0, \lambda(0, 1)) = -\lambda(0, 1) (\Lambda^{b})^{-1} (\lambda(0, 1)) + c(0)$

- No discount rate.
- No final payoff.
- The function $L(\cdot, \cdot)$:
 - $L(0, \lambda(0, 1)) = -\lambda(0, 1) (\Lambda^{b})^{-1} (\lambda(0, 1)) + c(0)$
 - $L(Q, \lambda(Q, Q-1)) = -\lambda(Q, Q-1)(\Lambda^{s})^{-1}(\lambda(Q, Q-1)) + c(Q)$

- No discount rate.
- No final payoff.
- The function $L(\cdot, \cdot)$:
 - $L(0, \lambda(0, 1)) = -\lambda(0, 1) (\Lambda^b)^{-1} (\lambda(0, 1)) + c(0)$
 - $L(Q, \lambda(Q, Q-1)) = -\lambda(Q, Q-1)(\Lambda^{s})^{-1}(\lambda(Q, Q-1)) + c(Q)$
 - $\forall q \in \{1, \ldots, Q-1\},$

$$egin{split} \mathcal{L}(q,\lambda(q,q+1),\lambda(q,q-1)) &= -\lambda(q,q+1)\left(\Lambda^b
ight)^{-1}(\lambda(q,q+1)) \ &-\lambda(q,q-1)\left(\Lambda^s
ight)^{-1}(\lambda(q,q-1))+c(q) \end{split}$$

A general theory for optimal control on graphs – Finite-horizon problem

Main tool of optimal control: value function

Value function

The value function associates a state i and a time t to the best possible score starting at time t from state i:

The value function associates a state i and a time t to the best possible score starting at time t from state i:

$$u_{i}^{T,r}(t) = \sup_{(\lambda_{s}(\cdot,\cdot))_{s\in[t,T]}} \mathbb{E}\left[-\int_{t}^{T} e^{-r(s-t)} L\left(X_{s}^{t,i,\lambda}, \left(\lambda_{s}\left(X_{s}^{t,i,\lambda},j\right)\right)_{j\in\mathcal{V}\left(X_{s}^{t,i,\lambda}\right)}\right) ds + e^{-r(T-t)}g\left(X_{T}^{t,i,\lambda}\right)\right].$$

The value function associates a state i and a time t to the best possible score starting at time t from state i:

$$u_{i}^{T,r}(t) = \sup_{(\lambda_{s}(\cdot,\cdot))_{s\in[t,T]}} \mathbb{E}\left[-\int_{t}^{T} e^{-r(s-t)} L\left(X_{s}^{t,i,\lambda}, \left(\lambda_{s}\left(X_{s}^{t,i,\lambda}, j\right)\right)_{j\in\mathcal{V}\left(X_{s}^{t,i,\lambda}\right)}\right) ds + e^{-r(T-t)}g\left(X_{T}^{t,i,\lambda}\right)\right].$$

Many methods of optimal control are based on computing the value function and deducing the optimal controls.

The value function associates a state i and a time t to the best possible score starting at time t from state i:

$$u_{i}^{T,r}(t) = \sup_{(\lambda_{s}(\cdot,\cdot))_{s\in[t,T]}} \mathbb{E}\left[-\int_{t}^{T} e^{-r(s-t)} L\left(X_{s}^{t,i,\lambda}, \left(\lambda_{s}\left(X_{s}^{t,i,\lambda},j\right)\right)_{j\in\mathcal{V}\left(X_{s}^{t,i,\lambda}\right)}\right) ds + e^{-r(T-t)}g\left(X_{T}^{t,i,\lambda}\right)\right].$$

Many methods of optimal control are based on computing the value function and deducing the optimal controls.

How to compute the value function? \rightarrow through the system of ODEs it solves: Hamilton-Jacobi / Bellman equations.

 Let us consider a time t ∈ [0, T) and let us assume that we know the values of the value function at time t + dt.

- Let us consider a time $t \in [0, T)$ and let us assume that we know the values of the value function at time t + dt.
- If the agent is in state *i* at time *t* and chooses λ_t(·, ·) for the period
 [*t*, *t* + *dt*] then:

- Let us consider a time $t \in [0, T)$ and let us assume that we know the values of the value function at time t + dt.
- If the agent is in state *i* at time *t* and chooses λ_t(·, ·) for the period
 [*t*, *t* + *dt*] then:
 - for all $j \in \mathcal{V}(i)$, the agent will be in state j at time t + dt with probability $\lambda_t(i, j)dt$,

- Let us consider a time $t \in [0, T)$ and let us assume that we know the values of the value function at time t + dt.
- If the agent is in state *i* at time *t* and chooses λ_t(·, ·) for the period
 [*t*, *t* + *dt*] then:
 - for all $j \in \mathcal{V}(i)$, the agent will be in state j at time t + dt with probability $\lambda_t(i,j)dt$,
 - the agent will still be in state i at time t + dt with probability

$$1 - \sum_{j \in \mathcal{V}(i)} \lambda_t(i, j) dt$$

- Let us consider a time t ∈ [0, T) and let us assume that we know the values of the value function at time t + dt.
- If the agent is in state *i* at time *t* and chooses λ_t(·, ·) for the period
 [*t*, *t* + *dt*] then:
 - for all $j \in \mathcal{V}(i)$, the agent will be in state j at time t + dt with probability $\lambda_t(i, j)dt$,
 - the agent will still be in state i at time t+dt with probability $1-\sum_{j\in\mathcal{V}(i)}\lambda_t(i,j)dt.$

• Therefore

$$u_{i}^{T,r}(t) = \sup_{\lambda_{t}(\cdot,\cdot)} \left\{ -L\left(i, (\lambda_{t}(i,j))_{j\in\mathcal{V}(i)}\right) dt + e^{-rdt} \times \left(\left(1 - \sum_{j\in\mathcal{V}(i)} \lambda_{t}(i,j) dt \right) \cdot u_{i}^{T,r}(t+dt) + \sum_{j\in\mathcal{V}(i)} \lambda_{t}(i,j) dt \cdot u_{j}^{T,r}(t+dt) \right) \right\}$$

Taylor expansion

$$\begin{split} e^{-rdt} \left(\left(1 - \sum_{j \in \mathcal{V}(i)} \lambda_t(i, j) dt \right) \cdot u_i^{T, r}(t + dt) + \sum_{j \in \mathcal{V}(i)} \lambda_t(i, j) dt \cdot u_j^{T, r}(t + dt) \right) \\ = & (1 - rdt) \left(u_i^{T, r}(t + dt) + \sum_{j \in \mathcal{V}(i)} \lambda_t(i, j) dt (u_j^{T, r}(t + dt) - u_i^{T, r}(t + dt)) \right) \\ = & (1 - rdt) \left(u_i^{T, r}(t) + \frac{d}{dt} u_i^{T, r}(t) dt + \sum_{j \in \mathcal{V}(i)} \lambda_t(i, j) dt (u_j^{T, r}(t) - u_i^{T, r}(t)) + o(dt) \right) \\ = & u_i^{T, r}(t) + dt \left(-ru_i^{T, r}(t) + \frac{d}{dt} u_i^{T, r}(t) + \sum_{j \in \mathcal{V}(i)} \lambda_t(i, j) (u_j^{T, r}(t) - u_i^{T, r}(t)) \right) \\ + & o(dt) \end{split}$$

Wrapping up we get:

Wrapping up we get:

$$u_{i}^{T,r}(t) = \sup_{\lambda_{t}(\cdot,\cdot)} \left\{ -L\left(i, (\lambda_{t}(i,j))_{j \in \mathcal{V}(i)}\right) dt + u_{i}^{T,r}(t) + dt \left(-ru_{i}^{T,r}(t) + \frac{d}{dt}u_{i}^{T,r}(t) + \sum_{j \in \mathcal{V}(i)} \lambda_{t}(i,j)(u_{j}^{T,r}(t) - u_{i}^{T,r}(t))\right) + o(dt) \right\}$$

Wrapping up we get:

$$u_{i}^{T,r}(t) = \sup_{\lambda_{t}(\cdot,\cdot)} \left\{ -L\left(i, (\lambda_{t}(i,j))_{j \in \mathcal{V}(i)}\right) dt + u_{i}^{T,r}(t) + dt \left(-ru_{i}^{T,r}(t) + \frac{d}{dt}u_{i}^{T,r}(t) + \sum_{j \in \mathcal{V}(i)} \lambda_{t}(i,j)(u_{j}^{T,r}(t) - u_{i}^{T,r}(t))\right) + o(dt) \right\}$$

So, necessarily:

$$0 = \frac{d}{dt} u_i^{T,r}(t) - r u_i^{T,r}(t) + \sup_{\lambda_t(\cdot,\cdot)} \left(\left(\sum_{j \in \mathcal{V}(i)} \lambda_t(i,j) \left(u_j^{T,r}(t) - u_i^{T,r}(t) \right) \right) - L\left(i, (\lambda_t(i,j))_{j \in \mathcal{V}(i)}\right) \right),$$

Hamilton-Jacobi / Bellman equations

Hamilton-Jacobi / Bellman equations

Because

$$u_i^{T,r}(T) = g(i), \quad \forall i \in \mathcal{I},$$

Because

$$u_i^{T,r}(T) = g(i), \quad \forall i \in \mathcal{I},$$

we are interested in the system of ODEs:

$$\begin{aligned} \forall i \in \mathcal{I}, \quad 0 &= \quad \frac{d}{dt} V_i^{\mathcal{T}, r}(t) - r V_i^{\mathcal{T}, r}(t) \\ &+ \sup_{(\lambda_{ij})_{j \in \mathcal{V}(i)} \in \mathbb{R}^{|\mathcal{V}(i)|}_+} \left(\left(\sum_{j \in \mathcal{V}(i)} \lambda_{ij} \left(V_j^{\mathcal{T}, r}(t) - V_i^{\mathcal{T}, r}(t) \right) \right) - L \left(i, (\lambda_{ij})_{j \in \mathcal{V}(i)} \right) \right) \\ \text{with terminal condition } V_i^{\mathcal{T}, r}(\mathcal{T}) = g(i), \quad \forall i \in \mathcal{I}. \end{aligned}$$

Hamilton-Jacobi / Bellman equations

To simplify notations, we introduce the Hamiltonian functions associated with the cost functions $(L(i, \cdot))_{i \in \mathcal{I}}$:

 $\forall i \in \mathcal{I}, H(i, \cdot) : p \in \mathbb{R}^{|\mathcal{V}(i)|} \mapsto H(i, p)$

where

$$H(i,p) = \sup_{(\lambda_{ij})_{j \in \mathcal{V}(i)} \in \mathbb{R}^{|\mathcal{V}(i)|}_{+}} \left(\left(\sum_{j \in \mathcal{V}(i)} \lambda_{ij} p_{j} \right) - L\left(i, (\lambda_{ij})_{j \in \mathcal{V}(i)}\right) \right).$$

Hamilton-Jacobi / Bellman equations

Hamilton-Jacobi / Bellman equations

The ODEs then write:

 $\forall (i, t) \in \mathcal{I} \times [0, T],$ $\frac{d}{dt} V_i^{T,r}(t) - r V_i^{T,r}(t) + H\left(i, \left(V_j^{T,r}(t) - V_i^{T,r}(t)\right)_{j \in \mathcal{V}(i)}\right) = 0$ with terminal condition $V_i^{T,r}(T) = g(i), \quad \forall i \in \mathcal{I}.$

Hamilton-Jacobi / Bellman equations

The ODEs then write:

 $\forall (i,t) \in \mathcal{I} \times [0,T],$ $\frac{d}{dt} V_i^{T,r}(t) - r V_i^{T,r}(t) + H\left(i, \left(V_j^{T,r}(t) - V_i^{T,r}(t)\right)_{j \in \mathcal{V}(i)}\right) = 0$

with terminal condition $V_i^{T,r}(T) = g(i), \quad \forall i \in \mathcal{I}.$

Our goal now

Prove existence (and uniqueness) on $\mathcal{I} \times [0, T]$.

Hamilton-Jacobi / Bellman equations

The ODEs then write:

 $\forall (i,t) \in \mathcal{I} \times [0,T],$ $\frac{d}{dt} V_i^{T,r}(t) - r V_i^{T,r}(t) + H\left(i, \left(V_j^{T,r}(t) - V_i^{T,r}(t)\right)_{j \in \mathcal{V}(i)}\right) = 0$

with terminal condition $V_i^{T,r}(T) = g(i), \quad \forall i \in \mathcal{I}.$

Our goal now

Prove existence (and uniqueness) on $\mathcal{I} \times [0, T]$.

The solution will be the value function $(u_i^{T,r})_{i \in \mathcal{I}}$ and the optimal controls of an agent in state *i* at time *t* given by any maximizer of

$$\left(\sum_{j\in\mathcal{V}(i)}\lambda_{ij}\left(u_{j}^{T,r}(t)-u_{i}^{T,r}(t)\right)\right)-L\left(i,(\lambda_{ij})_{j\in\mathcal{V}(i)}\right)$$

 For local (in time) existence and uniqueness: Cauchy-Lipschitz / Picard-Lindelöf theorem → requires locally Lipschitz properties of H (with respect to p).

- For local (in time) existence and uniqueness: Cauchy-Lipschitz / Picard-Lindelöf theorem → requires locally Lipschitz properties of H (with respect to p).
- For global (in time) existence and uniqueness: Global versions of Cauchy-Lipschitz / Picard-Lindelöf theorem → requires Lipschitz properties of H (with respect to p) – too much here.

- For local (in time) existence and uniqueness: Cauchy-Lipschitz / Picard-Lindelöf theorem → requires locally Lipschitz properties of H (with respect to p).
- For global (in time) existence and uniqueness: Global versions of Cauchy-Lipschitz / Picard-Lindelöf theorem → requires Lipschitz properties of H (with respect to p) – too much here.
- For local (in time) existence only: Peano existence theorem \rightarrow requires continuity of *H* (with respect to *p*) we can do better here.

- For local (in time) existence and uniqueness: Cauchy-Lipschitz / Picard-Lindelöf theorem → requires locally Lipschitz properties of H (with respect to p).
- For global (in time) existence and uniqueness: Global versions of Cauchy-Lipschitz / Picard-Lindelöf theorem → requires Lipschitz properties of H (with respect to p) – too much here.
- For local (in time) existence only: Peano existence theorem \rightarrow requires continuity of *H* (with respect to *p*) we can do better here.

From local to (half-)global existence

- Monotonicity properties
- Comparison principles
- A priori estimates
- etc.

1. Non-degeneracy:

$$\forall i \in \mathcal{I}, \exists (\lambda_{ij})_{j \in \mathcal{V}(i)} \in \mathbb{R}^{*|\mathcal{V}(i)|}_{+}, L\left(i, (\lambda_{ij})_{j \in \mathcal{V}(i)}\right) < +\infty.$$

1. Non-degeneracy:

$$\forall i \in \mathcal{I}, \exists (\lambda_{ij})_{j \in \mathcal{V}(i)} \in \mathbb{R}_{+}^{*|\mathcal{V}(i)|}, L\left(i, (\lambda_{ij})_{j \in \mathcal{V}(i)}\right) < +\infty.$$

2. Lower semi-continuity: $\forall i \in \mathcal{I}$, $L(i, \cdot)$ is lower semi-continuous.

1. Non-degeneracy:

$$\forall i \in \mathcal{I}, \exists (\lambda_{ij})_{j \in \mathcal{V}(i)} \in \mathbb{R}^{*|\mathcal{V}(i)|}_{+}, L\left(i, (\lambda_{ij})_{j \in \mathcal{V}(i)}\right) < +\infty.$$

- 2. Lower semi-continuity: $\forall i \in \mathcal{I}$, $L(i, \cdot)$ is lower semi-continuous.
- 3. Asymptotic super-linearity:

$$\forall i \in \mathcal{I}, \lim_{\|(\lambda_{ij})_{j \in \mathcal{V}(i)}\|_{\infty} \to +\infty} \frac{L\left(i, (\lambda_{ij})_{j \in \mathcal{V}(i)}\right)}{\left\|(\lambda_{ij})_{j \in \mathcal{V}(i)}\right\|_{\infty}} = +\infty.$$

1. Non-degeneracy:

$$\forall i \in \mathcal{I}, \exists (\lambda_{ij})_{j \in \mathcal{V}(i)} \in \mathbb{R}^{*|\mathcal{V}(i)|}_{+}, L\left(i, (\lambda_{ij})_{j \in \mathcal{V}(i)}\right) < +\infty.$$

- 2. Lower semi-continuity: $\forall i \in \mathcal{I}$, $L(i, \cdot)$ is lower semi-continuous.
- 3. Asymptotic super-linearity:

$$\forall i \in \mathcal{I}, \lim_{\|(\lambda_{ij})_{j \in \mathcal{V}(i)}\|_{\infty} \to +\infty} \frac{L\left(i, (\lambda_{ij})_{j \in \mathcal{V}(i)}\right)}{\left\|(\lambda_{ij})_{j \in \mathcal{V}(i)}\right\|_{\infty}} = +\infty.$$

4. Boundedness from below (not really an assumption): $\exists \underline{C} \in \mathbb{R}$, $\forall i \in \mathcal{I}, \forall (\lambda_{ij})_{j \in \mathcal{V}(i)} \in \mathbb{R}^{|\mathcal{V}(i)|}_+, L\left(i, (\lambda_{ij})_{j \in \mathcal{V}(i)}\right) \geq \underline{C}.$

Consequences for the function H

Proposition

 $\forall i \in \mathcal{I}$, the function $H(i, \cdot)$ is finite and verifies the following properties:

• $\forall p = (p_j)_{j \in \mathcal{V}(i)} \in \mathbb{R}^{|\mathcal{V}(i)|}, \exists (\lambda_{ij}^*)_{j \in \mathcal{V}(i)} \in \mathbb{R}^{|\mathcal{V}(i)|}_+,$

$$H(i,p) = \left(\sum_{j \in \mathcal{V}(i)} \lambda_{ij}^* p_j\right) - L\left(i, \left(\lambda_{ij}^*\right)_{j \in \mathcal{V}(i)}\right).$$

- $H(i, \cdot)$ is convex on $\mathbb{R}^{|\mathcal{V}(i)|}$. In particular it is locally Lipschitz.
- $H(i, \cdot)$ is non-decreasing with respect to each coordinate.

Consequences for the function H

Proposition

 $\forall i \in \mathcal{I}$, the function $H(i, \cdot)$ is finite and verifies the following properties:

• $\forall p = (p_j)_{j \in \mathcal{V}(i)} \in \mathbb{R}^{|\mathcal{V}(i)|}, \exists (\lambda_{ij}^*)_{j \in \mathcal{V}(i)} \in \mathbb{R}^{|\mathcal{V}(i)|}_+,$

$$H(i, p) = \left(\sum_{j \in \mathcal{V}(i)} \lambda_{ij}^* p_j\right) - L\left(i, \left(\lambda_{ij}^*\right)_{j \in \mathcal{V}(i)}\right).$$

- $H(i, \cdot)$ is convex on $\mathbb{R}^{|\mathcal{V}(i)|}$. In particular it is locally Lipschitz.
- $H(i, \cdot)$ is non-decreasing with respect to each coordinate.

We can therefore use Picard-Lindelöf theorem to get (local) existence and uniqueness over an interval $(\tau, T]$

Consequences for the function H

Proposition

 $\forall i \in \mathcal{I}$, the function $H(i, \cdot)$ is finite and verifies the following properties:

• $\forall p = (p_j)_{j \in \mathcal{V}(i)} \in \mathbb{R}^{|\mathcal{V}(i)|}, \exists (\lambda_{ij}^*)_{j \in \mathcal{V}(i)} \in \mathbb{R}^{|\mathcal{V}(i)|}_+,$

$$H(i, p) = \left(\sum_{j \in \mathcal{V}(i)} \lambda_{ij}^* p_j\right) - L\left(i, \left(\lambda_{ij}^*\right)_{j \in \mathcal{V}(i)}\right).$$

- $H(i, \cdot)$ is convex on $\mathbb{R}^{|\mathcal{V}(i)|}$. In particular it is locally Lipschitz.
- $H(i, \cdot)$ is non-decreasing with respect to each coordinate.

We can therefore use Picard-Lindelöf theorem to get (local) existence and uniqueness over an interval $(\tau, T]$ \rightarrow How to be sure that [0, T] is included?

Proof.

• Because of non-degeneracy $H(i, p) \neq -\infty$.

- Because of non-degeneracy $H(i, p) \neq -\infty$.
- $\bullet\,$ Because of asymptotic super-linearity, there is a compact set ${\mathcal C}$ such that

$$\sup_{\substack{(\lambda_{ij})_{j\in\mathcal{V}(i)}\in\mathbb{R}_{+}^{|\mathcal{V}(i)|}}}\left(\left(\sum_{j\in\mathcal{V}(i)}\lambda_{ij}p_{j}\right)-L\left(i,(\lambda_{ij})_{j\in\mathcal{V}(i)}\right)\right)$$
$$=\sup_{\substack{(\lambda_{ij})_{j\in\mathcal{V}(i)}\in\mathcal{C}}}\left(\left(\sum_{j\in\mathcal{V}(i)}\lambda_{ij}p_{j}\right)-L\left(i,(\lambda_{ij})_{j\in\mathcal{V}(i)}\right)\right)$$

Proof.

- Because of non-degeneracy $H(i, p) \neq -\infty$.
- $\bullet\,$ Because of asymptotic super-linearity, there is a compact set ${\mathcal C}$ such that

$$\sup_{\substack{(\lambda_{ij})_{j\in\mathcal{V}(i)}\in\mathbb{R}_{+}^{|\mathcal{V}(i)|}}}\left(\left(\sum_{j\in\mathcal{V}(i)}\lambda_{ij}p_{j}\right)-L\left(i,(\lambda_{ij})_{j\in\mathcal{V}(i)}\right)\right)$$
$$=\sup_{\substack{(\lambda_{ij})_{j\in\mathcal{V}(i)}\in\mathcal{C}}}\left(\left(\sum_{j\in\mathcal{V}(i)}\lambda_{ij}p_{j}\right)-L\left(i,(\lambda_{ij})_{j\in\mathcal{V}(i)}\right)\right)$$

• Because $L(i, \cdot)$ is l.s.c, the supremum is reached.

- Because of non-degeneracy $H(i, p) \neq -\infty$.
- \bullet Because of asymptotic super-linearity, there is a compact set ${\mathcal C}$ such that

$$\sup_{\substack{(\lambda_{ij})_{j\in\mathcal{V}(i)}\in\mathbb{R}_{+}^{|\mathcal{V}(i)|}}} \left(\left(\sum_{j\in\mathcal{V}(i)}\lambda_{ij}p_{j}\right) - L\left(i,(\lambda_{ij})_{j\in\mathcal{V}(i)}\right) \right)$$
$$= \sup_{\substack{(\lambda_{ij})_{j\in\mathcal{V}(i)}\in\mathcal{C}}} \left(\left(\sum_{j\in\mathcal{V}(i)}\lambda_{ij}p_{j}\right) - L\left(i,(\lambda_{ij})_{j\in\mathcal{V}(i)}\right) \right)$$

- Because $L(i, \cdot)$ is l.s.c, the supremum is reached.
- Convexity of $H(i, \cdot)$ derives from the definition of $H(i, \cdot)$ as a supremum of affine functions.

- Because of non-degeneracy $H(i, p) \neq -\infty$.
- \bullet Because of asymptotic super-linearity, there is a compact set ${\mathcal C}$ such that

$$\sup_{\substack{\left(\lambda_{ij}\right)_{j\in\mathcal{V}(i)}\in\mathbb{R}_{+}^{|\mathcal{V}(i)|}}}\left(\left(\sum_{j\in\mathcal{V}(i)}\lambda_{ij}p_{j}\right)-L\left(i,\left(\lambda_{ij}\right)_{j\in\mathcal{V}(i)}\right)\right)$$
$$=\sup_{\substack{\left(\lambda_{ij}\right)_{j\in\mathcal{V}(i)}\in\mathcal{C}}}\left(\left(\sum_{j\in\mathcal{V}(i)}\lambda_{ij}p_{j}\right)-L\left(i,\left(\lambda_{ij}\right)_{j\in\mathcal{V}(i)}\right)\right)$$

- Because $L(i, \cdot)$ is l.s.c, the supremum is reached.
- Convexity of $H(i, \cdot)$ derives from the definition of $H(i, \cdot)$ as a supremum of affine functions.
- Monotonicity of H(i, ·) derives from the fact that the intensities (λ_{ij})_{j∈V(i)} are nonnegative.

Proposition (Comparison principle)

Let $t' \in (-\infty, T)$. Let $(v_i)_{i \in \mathcal{I}}$ and $(w_i)_{i \in \mathcal{I}}$ be two continuously differentiable functions on [t', T] such that

$$\frac{d}{dt}v_i(t) - rv_i(t) + H\left(i, (v_j(t) - v_i(t))_{j \in \mathcal{V}(i)}\right) \ge 0, \forall (i, t) \in \mathcal{I} \times [t', T],$$

$$\frac{d}{dt}w_i(t) - rw_i(t) + H\left(i, (w_j(t) - w_i(t))_{j \in \mathcal{V}(i)}\right) \le 0, \forall (i, t) \in \mathcal{I} \times [t', T],$$
and $v_i(T) \le w_i(T), \forall i \in \mathcal{I}.$

Then $v_i(t) \leq w_i(t)$, $\forall (i, t) \in \mathcal{I} \times [t', T]$.

Proof.	
Let $\varepsilon > 0$.	

Proof.

Let $\varepsilon > 0$.

Let us define

$$z:(i,t)\in \mathcal{I}\times [t',T]\mapsto z_i(t)=e^{-rt}(v_i(t)-w_i(t)-\varepsilon(T-t)).$$

Let $\varepsilon > 0$.

Let us define

$$z:(i,t)\in\mathcal{I} imes[t',T]\mapsto z_i(t)=e^{-rt}(v_i(t)-w_i(t)-arepsilon(\mathcal{T}-t)).$$

We have

$$\begin{aligned} \frac{d}{dt}z_i(t) &= -re^{-rt}(v_i(t) - w_i(t) - \varepsilon(T - t)) + e^{-rt}\left(\frac{d}{dt}v_i(t) - \frac{d}{dt}w_i(t) + \varepsilon\right) \\ &= e^{-rt}\left(\left(\frac{d}{dt}v_i(t) - rv_i(t)\right) - \left(\frac{d}{dt}w_i(t) - rw_i(t)\right) + \varepsilon + r\varepsilon(T - t)\right) \\ &\geq e^{-rt}\left(-H\left(i, \left(v_j(t) - v_i(t)\right)_{j \in \mathcal{V}(i)}\right) + H\left(i, \left(w_j(t) - w_i(t)\right)_{j \in \mathcal{V}(i)}\right)\right) \\ &+ e^{-rt}\left(\varepsilon + r\varepsilon(T - t)\right).\end{aligned}$$

Proof.

Let us choose $(i^*, t^*) \in \mathcal{I} \times [t', T]$ maximizing z.

Proof.

Let us choose $(i^*, t^*) \in \mathcal{I} \times [t', T]$ maximizing z. We now show by contradiction that $t^* = T$.

Proof.

Let us choose $(i^*, t^*) \in \mathcal{I} \times [t', T]$ maximizing z. We now show by contradiction that $t^* = T$.

$$t^* < T \implies rac{d}{dt} z_{i^*} \left(t^*
ight) \leq 0 \implies$$

$$\begin{split} H\left(i^*, \left(\left(v_j\left(t^*\right) - v_{i^*}\left(t^*\right)\right)_{j \in \mathcal{V}(i^*)}\right) & \geq & H\left(i^*, \left(\left(w_j\left(t^*\right) - w_{i^*}\left(t^*\right)\right)_{j \in \mathcal{V}(i^*)}\right) \right. \\ & + \varepsilon + r\varepsilon(T - t^*). \end{split}$$

Proof.

Let us choose $(i^*, t^*) \in \mathcal{I} \times [t', T]$ maximizing z. We now show by contradiction that $t^* = T$.

$$t^* < T \implies rac{d}{dt} z_{i^*}\left(t^*
ight) \leq 0 \implies$$

$$\begin{split} H\left(i^*, \left(\left(v_j\left(t^*\right) - v_{i^*}\left(t^*\right)\right)_{j \in \mathcal{V}(i^*)}\right) & \geq & H\left(i^*, \left(\left(w_j\left(t^*\right) - w_{i^*}\left(t^*\right)\right)_{j \in \mathcal{V}(i^*)}\right) \right. \\ & + \varepsilon + r\varepsilon(T - t^*). \end{split}$$

By definition of (i^*, t^*) , we know that

$$orall j \in \mathcal{V}(i^{st}), \mathsf{v}_{j}\left(t^{st}
ight) - \mathsf{w}_{j}\left(t^{st}
ight) \leq \mathsf{v}_{i^{st}}\left(t^{st}
ight) - \mathsf{w}_{i^{st}}\left(t^{st}
ight)$$

i.e.

$$orall j \in \mathcal{V}(i^*), v_j\left(t^*
ight) - v_{i^*}\left(t^*
ight) \leq w_j\left(t^*
ight) - w_{i^*}\left(t^*
ight).$$

From the monotonicity of $H(i^*, \cdot)$, it follows that

$$H\left(i^{*},\left(v_{j}\left(t^{*}\right)-v_{i^{*}}\left(t^{*}\right)\right)_{j\in\mathcal{V}\left(i^{*}\right)}\right)\leq H\left(i^{*},\left(w_{j}\left(t^{*}\right)-w_{i^{*}}\left(t^{*}\right)\right)_{j\in\mathcal{V}\left(i^{*}\right)}\right)$$

From the monotonicity of $H(i^*, \cdot)$, it follows that

$$H\left(i^*,\left(v_j\left(t^*\right)-v_{i^*}\left(t^*\right)\right)_{j\in\mathcal{V}(i^*)}\right) \leq H\left(i^*,\left(w_j\left(t^*\right)-w_{i^*}\left(t^*\right)\right)_{j\in\mathcal{V}(i^*)}\right).$$

This contradicts the above inequality.

From the monotonicity of $H(i^*, \cdot)$, it follows that

$$H\left(i^{*},\left(v_{j}\left(t^{*}\right)-v_{i^{*}}\left(t^{*}\right)\right)_{j\in\mathcal{V}\left(i^{*}\right)}\right) \leq H\left(i^{*},\left(w_{j}\left(t^{*}\right)-w_{i^{*}}\left(t^{*}\right)\right)_{j\in\mathcal{V}\left(i^{*}\right)}\right).$$

This contradicts the above inequality. Therefore, $t^* = T$,

From the monotonicity of $H(i^*, \cdot)$, it follows that

$$H\left(i^{*},\left(v_{j}\left(t^{*}\right)-v_{i^{*}}\left(t^{*}\right)\right)_{j\in\mathcal{V}\left(i^{*}\right)}\right) \leq H\left(i^{*},\left(w_{j}\left(t^{*}\right)-w_{i^{*}}\left(t^{*}\right)\right)_{j\in\mathcal{V}\left(i^{*}\right)}\right).$$

This contradicts the above inequality. Therefore, $t^* = T$, and we have:

$$orall (i,t)\in\mathcal{I} imes[t',T],\quad z_i(t)\leq z_{i^*}(T)=e^{-rT}(v_{i^*}(T)-w_{i^*}(T))\leq 0.$$

From the monotonicity of $H(i^*, \cdot)$, it follows that

$$H\left(i^{*},\left(v_{j}\left(t^{*}\right)-v_{i^{*}}\left(t^{*}\right)\right)_{j\in\mathcal{V}\left(i^{*}\right)}\right) \leq H\left(i^{*},\left(w_{j}\left(t^{*}\right)-w_{i^{*}}\left(t^{*}\right)\right)_{j\in\mathcal{V}\left(i^{*}\right)}\right).$$

This contradicts the above inequality. Therefore, $t^* = T$, and we have:

$$orall (i,t)\in \mathcal{I} imes [t',T], \quad z_i(t)\leq z_{i^*}(T)=e^{-rT}(v_{i^*}(T)-w_{i^*}(T))\leq 0.$$

Therefore, $\forall (i, t) \in \mathcal{I} \times [t', T], \quad v_i(t) \leq w_i(t) + \varepsilon(T - t)$

From the monotonicity of $H(i^*, \cdot)$, it follows that

$$H\left(i^{*},\left(v_{j}\left(t^{*}\right)-v_{i^{*}}\left(t^{*}\right)\right)_{j\in\mathcal{V}\left(i^{*}\right)}\right) \leq H\left(i^{*},\left(w_{j}\left(t^{*}\right)-w_{i^{*}}\left(t^{*}\right)\right)_{j\in\mathcal{V}\left(i^{*}\right)}\right)$$

This contradicts the above inequality. Therefore, $t^* = T$, and we have:

$$orall (i,t) \in \mathcal{I} \times [t',T], \quad z_i(t) \leq z_{i^*}(T) = e^{-rT}(v_{i^*}(T) - w_{i^*}(T)) \leq 0.$$

Therefore, $\forall (i, t) \in \mathcal{I} \times [t', T], \quad v_i(t) \leq w_i(t) + \varepsilon(T - t)$ and we conclude by sending ε to 0.

Theorem ((Half-)Global existence and uniqueness)

There exists a unique solution $(V_i^{T,r})_{i \in \mathcal{I}}$ on $(-\infty, T]$ to the Hamilton-Jacobi/Bellman equation

$$\begin{aligned} \forall i \in \mathcal{I}, \quad 0 &= \quad \frac{d}{dt} V_i^{\mathcal{T}, r}(t) - r V_i^{\mathcal{T}, r}(t) \\ &+ \sup_{(\lambda_{ij})_{j \in \mathcal{V}(i)} \in \mathbb{R}_+^{|\mathcal{V}(i)|}} \left(\left(\sum_{j \in \mathcal{V}(i)} \lambda_{ij} \left(V_j^{\mathcal{T}, r}(t) - V_i^{\mathcal{T}, r}(t) \right) \right) - L\left(i, (\lambda_{ij})_{j \in \mathcal{V}(i)} \right) \right) \end{aligned}$$

with terminal condition $V_i^{T,r}(T) = g(i), \quad \forall i \in \mathcal{I}.$

Proof.

Proof.

 $\forall i \in \mathcal{I}$, the function $H(i, \cdot)$ is locally Lipschitz. Therefore by Picard-Lindelöf theorem there exists a (left-)maximal solution $\left(V_i^{\mathcal{T}, r}\right)_{i \in \mathcal{I}}$ defined over $(\tau^*, \mathcal{T}]$, where $\tau^* \in [-\infty, \mathcal{T})$.

Proof.

 $\forall i \in \mathcal{I}$, the function $H(i, \cdot)$ is locally Lipschitz. Therefore by Picard-Lindelöf theorem there exists a (left-)maximal solution $\left(V_i^{T,r}\right)_{i\in\mathcal{I}}$ defined over $(\tau^*, T]$, where $\tau^* \in [-\infty, T)$.

Our goal is to prove by contradiction that $\tau^* = -\infty$.

Proof.

 $\forall i \in \mathcal{I}$, the function $H(i, \cdot)$ is locally Lipschitz. Therefore by Picard-Lindelöf theorem there exists a (left-)maximal solution $(V_i^{T,r})_{i \in \mathcal{I}}$ defined over $(\tau^*, T]$, where $\tau^* \in [-\infty, T)$.

Our goal is to prove by contradiction that $au^*=-\infty.$ For $\mathcal{C}\in\mathbb{R},$ let us consider

 $v^{\mathcal{C}}:(i,t)\in\mathcal{I}\times(\tau^*,T]\mapsto v^{\mathcal{C}}_i(t)=e^{-r(T-t)}\left(g(i)+\mathcal{C}(T-t)\right).$

Proof.

 $\forall i \in \mathcal{I}$, the function $H(i, \cdot)$ is locally Lipschitz. Therefore by Picard-Lindelöf theorem there exists a (left-)maximal solution $(V_i^{T,r})_{i\in\mathcal{I}}$ defined over $(\tau^*, T]$, where $\tau^* \in [-\infty, T)$.

Our goal is to prove by contradiction that $au^*=-\infty.$ For $C\in\mathbb{R},$ let us consider

$$v^{\mathcal{C}}:(i,t)\in\mathcal{I}\times(\tau^*,T]\mapsto v^{\mathcal{C}}_i(t)=e^{-r(T-t)}\left(g(i)+\mathcal{C}(T-t)\right).$$

We see that

$$\frac{d}{dt}v_{i}^{C}(t) - rv_{i}^{C}(t) + H\left(i, \left(v_{j}^{C}(t) - v_{i}^{C}(t)\right)_{j \in \mathcal{V}(i)}\right)$$

= $-Ce^{-r(T-t)} + H\left(i, e^{-r(T-t)}\left(g(j) - g(i)\right)_{j \in \mathcal{V}(i)}\right)$

Proof.

Proof.

If τ^* is finite, the function

$$(i,t) \in \mathcal{I} imes (au^*, T] \mapsto e^{r(T-t)} H\left(i, e^{-r(T-t)}(g(j) - g(i))_{j \in \mathcal{V}(i)}
ight)$$

is bounded.

Proof.

If τ^* is finite, the function

$$(i,t)\in\mathcal{I} imes(au^*,T]\mapsto e^{r(au-t)}H\left(i,e^{-r(au-t)}(g(j)-g(i))_{j\in\mathcal{V}(i)}
ight)$$

is bounded.

So, there exist \mathcal{C}_1 and \mathcal{C}_2 such that $orall (i,t) \in \mathcal{I} imes (au^*,T]$,

$$\begin{aligned} &-C_1 e^{-r(T-t)} + H\left(i, e^{-r(T-t)}(g(j) - g(i))_{j \in \mathcal{V}(i)}\right) \ge 0, \quad \text{and} \\ &-C_2 e^{-r(T-t)} + H\left(i, e^{-r(T-t)}(g(j) - g(i))_{j \in \mathcal{V}(i)}\right) \le 0. \end{aligned}$$

Proof.

If τ^* is finite, the function

$$(i,t) \in \mathcal{I} imes (au^*, T] \mapsto e^{r(au-t)} H\left(i, e^{-r(au-t)}(g(j) - g(i))_{j \in \mathcal{V}(i)}
ight)$$

is bounded.

So, there exist C_1 and C_2 such that $\forall (i, t) \in \mathcal{I} \times (\tau^*, T]$,

$$- C_1 e^{-r(T-t)} + H\left(i, e^{-r(T-t)}(g(j) - g(i))_{j \in \mathcal{V}(i)}\right) \ge 0, \text{ and}$$

$$- C_2 e^{-r(T-t)} + H\left(i, e^{-r(T-t)}(g(j) - g(i))_{j \in \mathcal{V}(i)}\right) \le 0.$$

Applying the above comparison principle over any interval $[t', T] \subset (\tau^*, T]$, we obtain:

$$\forall (i,t) \in \mathcal{I} \times [t',T], \quad v_i^{\mathcal{C}_1}(t) \leq V_i^{\mathcal{T},r}(t) \leq v_i^{\mathcal{C}_2}(t).$$

Proof.

By sending t' to τ^* we obtain

$$orall (i,t) \in \mathcal{I} imes (au^*,T], \quad v_i^{\mathcal{C}_1}(t) \leq V_i^{\mathcal{T},r}(t) \leq v_i^{\mathcal{C}_2}(t).$$

By sending t' to τ^* we obtain

$$\forall (i,t) \in \mathcal{I} \times (\tau^*,T], \quad v_i^{C_1}(t) \leq V_i^{T,r}(t) \leq v_i^{C_2}(t).$$

In particular, τ^* finite implies that the functions $\left(V_i^{T,r}\right)_{i\in\mathcal{I}}$ are bounded... in contradiction with the maximality of τ^* .

By sending t' to τ^* we obtain

$$\forall (i,t) \in \mathcal{I} \times (\tau^*,T], \quad v_i^{\mathcal{C}_1}(t) \leq V_i^{\mathcal{T},r}(t) \leq v_i^{\mathcal{C}_2}(t).$$

In particular, τ^* finite implies that the functions $\left(V_i^{T,r}\right)_{i\in\mathcal{I}}$ are bounded... in contradiction with the maximality of τ^* .

In the proof of the above results, the convexity of the Hamiltonian functions $(H(i, \cdot))_{i \in \mathcal{I}}$ does not play any role.

By sending t' to τ^* we obtain

$$\forall (i,t) \in \mathcal{I} \times (\tau^*,T], \quad v_i^{C_1}(t) \leq V_i^{T,r}(t) \leq v_i^{C_2}(t).$$

In particular, τ^* finite implies that the functions $\left(V_i^{T,r}\right)_{i\in\mathcal{I}}$ are bounded... in contradiction with the maximality of τ^* .

In the proof of the above results, the convexity of the Hamiltonian functions $(H(i, \cdot))_{i \in \mathcal{I}}$ does not play any role.

The results indeed hold as soon as the Hamiltonian functions are locally Lipschitz and non-decreasing with respect to each coordinate.

Going back to the optimal control problem

•
$$\forall (i,t) \in \mathcal{I} \times [0,T], u_i^{T,r}(t) = V_i^{T,r}(t).$$

- $\forall (i,t) \in \mathcal{I} \times [0,T], u_i^{T,r}(t) = V_i^{T,r}(t).$
- The optimal controls are given by any feedback control function verifying for all i ∈ I, for all j ∈ V(i), and for all t ∈ [0, T],

$$\lambda_{t}^{*}(i,j) \in \underset{\left(\lambda_{ij}\right)_{j \in \mathcal{V}(i)} \in \mathbb{R}_{+}^{|\mathcal{V}(i)|}}{\operatorname{argmax}} \left(\left(\sum_{j \in \mathcal{V}(i)} \lambda_{ij} \left(u_{j}^{\mathsf{T},\mathsf{r}}(t) - u_{i}^{\mathsf{T},\mathsf{r}}(t) \right) \right) - L\left(i, \left(\lambda_{ij}\right)_{j \in \mathcal{V}(i)}\right) \right).$$

- $\forall (i,t) \in \mathcal{I} \times [0,T], u_i^{T,r}(t) = V_i^{T,r}(t).$
- The optimal controls are given by any feedback control function verifying for all i ∈ I, for all j ∈ V(i), and for all t ∈ [0, T],

$$\lambda_{t}^{*}(i,j) \in \underset{\left(\lambda_{ij}\right)_{j \in \mathcal{V}(i)} \in \mathbb{R}_{+}^{|\mathcal{V}(i)|}}{\operatorname{argmax}} \left(\left(\sum_{j \in \mathcal{V}(i)} \lambda_{ij} \left(u_{j}^{\mathcal{T},r}(t) - u_{j}^{\mathcal{T},r}(t) \right) \right) - L\left(i, \left(\lambda_{ij}\right)_{j \in \mathcal{V}(i)}\right) \right).$$

The above argmax is a always singleton if the Hamiltonian functions $(H(i, \cdot))_i$ are differentiable (which is guaranteed if $(L(i, \cdot))_i$ are convex functions that are strictly convex on their domain).

• In many problems, there is no final time T

• In many problems, there is no final time *T* (e.g. no natural *T* in the (re)commerce problem)

- In many problems, there is no final time *T* (e.g. no natural *T* in the (re)commerce problem)
- What happens when $T \to \infty$?

- In many problems, there is no final time *T* (e.g. no natural *T* in the (re)commerce problem)
- What happens when $T \to \infty$?
 - What is the asymptotic behavior of the value function?

- In many problems, there is no final time *T* (e.g. no natural *T* in the (re)commerce problem)
- What happens when $T \to \infty$?
 - What is the asymptotic behavior of the value function?
 - What is the asymptotic behavior of the optimal controls / optimal transition intensities?

- In many problems, there is no final time *T* (e.g. no natural *T* in the (re)commerce problem)
- What happens when $T \to \infty$?
 - What is the asymptotic behavior of the value function?
 - What is the asymptotic behavior of the optimal controls / optimal transition intensities?

Two cases: r > 0 and r = 0

A general theory for optimal control on graphs – Asymptotics when r > 0

Proposition

F

$$\exists (u_{i}^{r})_{i \in \mathcal{I}} \in \mathbb{R}^{N}, \forall (i, t) \in \mathcal{I} \times \mathbb{R}_{+}, \lim_{T \to +\infty} u_{i}^{T, r}(t) = u_{i}^{r}.$$
urthermore, $(u_{i}^{r})_{i \in \mathcal{I}}$ satisfies the following stationary Bellman equation:
$$-ru_{i}^{r} + H\left(i, (u_{j}^{r} - u_{i}^{r})_{i \in \mathcal{V}(i)}\right) = 0, \quad \forall i \in \mathcal{I}.$$

Proof.

Let us define

$$u_i^r = \sup_{\lambda} \mathbb{E}\left[-\int_0^{+\infty} e^{-rt} L\left(X_t^{0,i,\lambda}, \left(\lambda_t\left(X_t^{0,i,\lambda}, j\right)\right)_{j \in \mathcal{V}\left(X_t^{0,i,\lambda}\right)}\right) dt\right].$$

Proof.

Let us define

$$u_i^r = \sup_{\lambda} \mathbb{E}\left[-\int_0^{+\infty} e^{-rt} L\left(X_t^{0,i,\lambda}, \left(\lambda_t\left(X_t^{0,i,\lambda},j\right)\right)_{j\in\mathcal{V}\left(X_t^{0,i,\lambda}\right)}\right) dt\right].$$

It is finite because L is bounded from below and because of the non-degeneracy assumption (we will see it more precisely later).

Proof.

Let us define

$$u_i^r = \sup_{\lambda} \mathbb{E}\left[-\int_0^{+\infty} e^{-rt} L\left(X_t^{0,i,\lambda}, \left(\lambda_t\left(X_t^{0,i,\lambda},j\right)\right)_{j\in\mathcal{V}\left(X_t^{0,i,\lambda}\right)}\right) dt\right].$$

It is finite because L is bounded from below and because of the non-degeneracy assumption (we will see it more precisely later).

Let us consider an optimal control λ^* of the optimal control problem over [0, $\mathcal{T}].$

Proof.

Let us define

$$u_i^r = \sup_{\lambda} \mathbb{E}\left[-\int_0^{+\infty} e^{-rt} L\left(X_t^{0,i,\lambda}, \left(\lambda_t\left(X_t^{0,i,\lambda},j\right)\right)_{j\in\mathcal{V}\left(X_t^{0,i,\lambda}\right)}\right) dt\right].$$

It is finite because L is bounded from below and because of the non-degeneracy assumption (we will see it more precisely later).

Let us consider an optimal control λ^* of the optimal control problem over [0, $\mathcal{T}].$

Let us define a control λ on $[0, +\infty)$ by:

Proof.

Let us define

$$u_i^r = \sup_{\lambda} \mathbb{E}\left[-\int_0^{+\infty} e^{-rt} L\left(X_t^{0,i,\lambda}, \left(\lambda_t\left(X_t^{0,i,\lambda},j\right)\right)_{j\in\mathcal{V}\left(X_t^{0,i,\lambda}\right)}\right) dt\right].$$

It is finite because L is bounded from below and because of the non-degeneracy assumption (we will see it more precisely later).

Let us consider an optimal control λ^* of the optimal control problem over [0, $\mathcal{T}].$

Let us define a control λ on $[0, +\infty)$ by:

• $\lambda_t = \lambda_t^*$ for $t \in [0, T]$,

Proof.

Let us define

$$u_i^r = \sup_{\lambda} \mathbb{E}\left[-\int_0^{+\infty} e^{-rt} L\left(X_t^{0,i,\lambda}, \left(\lambda_t\left(X_t^{0,i,\lambda},j\right)\right)_{j\in\mathcal{V}\left(X_t^{0,i,\lambda}\right)}\right) dt\right].$$

It is finite because L is bounded from below and because of the non-degeneracy assumption (we will see it more precisely later).

Let us consider an optimal control λ^* of the optimal control problem over [0, $\mathcal{T}].$

Let us define a control λ on $[0, +\infty)$ by:

• $\lambda_t = \lambda_t^*$ for $t \in [0, T]$,

•
$$\lambda_t(i,j) = \tilde{\lambda}(i,j)$$
 for $t > T$, where $\tilde{\lambda}$ is such that $L\left(i, (\tilde{\lambda}(i,j))_{j \in \mathcal{V}(i)}\right) < +\infty$.

Proof.

$$\begin{split} & f_{i} \geq \mathbb{E}\left[-\int_{0}^{\infty} e^{-rt} \mathcal{L}\left(x_{t}^{0,i,\lambda},\left(\lambda_{t}\left(x_{t}^{0,i,\lambda},j\right)\right)_{j\in\mathcal{V}}\left(x_{t}^{0,i,\lambda}\right)\right)dt\right] \\ &\geq \mathbb{E}\left[-\int_{0}^{T} e^{-rt} \mathcal{L}\left(x_{t}^{0,i,\lambda^{*}},\left(\lambda_{t}^{*}\left(x_{t}^{0,i,\lambda^{*}},j\right)\right)_{j\in\mathcal{V}}\left(x_{t}^{0,i,\lambda^{*}}\right)\right)dt\right] \\ &+ \mathbb{E}\left[-\int_{T}^{\infty} e^{-rt} \mathcal{L}\left(x_{t}^{T,X_{T}^{0,i,\lambda^{*}},\lambda},\left(\lambda_{t}\left(x_{t}^{T,X_{T}^{0,i,\lambda^{*}},\lambda},j\right)\right)_{j\in\mathcal{V}}\left(x_{t}^{T,X_{T}^{0,i,\lambda^{*}},\lambda}\right)\right)dt\right] \\ &\geq u_{i}^{T,r}(0) - e^{-rT}g\left(x_{T}^{0,i,\lambda^{*}}\right) \\ &+ e^{-rT} \mathbb{E}\left[-\int_{T}^{\infty} e^{-r(t-T)} \mathcal{L}\left(x_{t}^{T,X_{T}^{0,i,\lambda^{*}},\tilde{\lambda}},\left(\tilde{\lambda}_{t}\left(x_{t}^{T,X_{T}^{0,i,\lambda^{*}},\tilde{\lambda}},j\right)\right)_{j\in\mathcal{V}}\left(x_{t}^{T,X_{T}^{0,i,\lambda^{*}},\tilde{\lambda}}\right)\right)dt\right] \\ &\geq u_{i}^{T,r}(0) - e^{-rT}g\left(x_{T}^{0,i,\lambda^{*}}\right) - \frac{M}{r}e^{-rT}. \end{split}$$

Proof.

$$\begin{split} & \stackrel{r}{}_{i} \geq \mathbb{E}\left[-\int_{0}^{\infty} e^{-rt} \mathcal{L}\left(x_{t}^{0,i,\lambda},\left(\lambda_{t}\left(x_{t}^{0,i,\lambda},j\right)\right)_{j\in\mathcal{V}}\left(x_{t}^{0,i,\lambda}\right)\right)dt\right] \\ &\geq \mathbb{E}\left[-\int_{0}^{T} e^{-rt} \mathcal{L}\left(x_{t}^{0,i,\lambda^{*}},\left(\lambda_{t}^{*}\left(x_{t}^{0,i,\lambda^{*}},j\right)\right)_{j\in\mathcal{V}}\left(x_{t}^{0,i,\lambda^{*}}\right)\right)dt\right] \\ &+ \mathbb{E}\left[-\int_{T}^{\infty} e^{-rt} \mathcal{L}\left(x_{t}^{T,X_{T}^{0,i,\lambda^{*}},\lambda},\left(\lambda_{t}\left(x_{t}^{T,X_{T}^{0,i,\lambda^{*}},\lambda},j\right)\right)_{j\in\mathcal{V}}\left(x_{t}^{T,X_{T}^{0,i,\lambda^{*}},\lambda}\right)\right)dt\right] \\ &\geq u_{i}^{T,r}(0) - e^{-rT}g\left(x_{T}^{0,i,\lambda^{*}}\right) \\ &+ e^{-rT} \mathbb{E}\left[-\int_{T}^{\infty} e^{-r(t-T)} \mathcal{L}\left(x_{t}^{T,X_{T}^{0,i,\lambda^{*}},\tilde{\lambda}},\left(\tilde{\lambda}_{t}\left(x_{t}^{T,X_{T}^{0,i,\lambda^{*}},\tilde{\lambda}},j\right)\right)_{j\in\mathcal{V}}\left(x_{t}^{T,X_{T}^{0,i,\lambda^{*}},\tilde{\lambda}}\right)\right)dt\right] \\ &\geq u_{i}^{T,r}(0) - e^{-rT}g\left(x_{T}^{0,i,\lambda^{*}}\right) - \frac{M}{r}e^{-rT}. \end{split}$$

So $\limsup_{T\to+\infty} u_i^{T,r}(0) \leq u_i^r$.

Proof.

Let us consider $\varepsilon > \mathbf{0}$ and λ^{ε} such that

$$u_{i}^{r}-\varepsilon \leq \mathbb{E}\left[-\int_{0}^{\infty} e^{-rt} L\left(X_{t}^{0,i,\lambda^{\varepsilon}},\left(\lambda_{t}^{\varepsilon}\left(X_{t}^{0,i,\lambda^{\varepsilon}},j\right)\right)_{j\in\mathcal{V}\left(X_{t}^{0,i,\lambda^{\varepsilon}}\right)}\right) dt\right]$$

Proof.

Let us consider $\varepsilon > 0$ and λ^{ε} such that

$$u_{i}^{r}-\varepsilon \leq \mathbb{E}\left[-\int_{0}^{\infty} e^{-rt} L\left(X_{t}^{0,i,\lambda^{\varepsilon}},\left(\lambda_{t}^{\varepsilon}\left(X_{t}^{0,i,\lambda^{\varepsilon}},j\right)\right)_{j\in\mathcal{V}\left(X_{t}^{0,i,\lambda^{\varepsilon}}\right)}\right) dt\right]$$

We have

$$\begin{split} u_{i}^{r} &- \varepsilon & \leq & \mathbb{E}\left[-\int_{0}^{T} e^{-rt} L\left(X_{t}^{0,i,\lambda^{\varepsilon}}, \left(\lambda_{t}^{\varepsilon}\left(X_{t}^{0,i,\lambda^{\varepsilon}},j\right)\right)_{j\in\mathcal{V}}\left(x_{t}^{0,i,\lambda^{\varepsilon}}\right)\right) dt\right] \\ &+ \mathbb{E}\left[-\int_{T}^{\infty} e^{-rt} L\left(x_{t}^{T,X_{T}^{0,i,\lambda^{\varepsilon}},\lambda^{\varepsilon}}, \left(\lambda_{t}^{\varepsilon}\left(X_{t}^{T,X_{T}^{0,i,\lambda^{\varepsilon}},\lambda^{\varepsilon}},j\right)\right)_{j\in\mathcal{V}}\left(x_{t}^{T,X_{T}^{0,i,\lambda^{\varepsilon}},\lambda^{\varepsilon}}\right)\right) dt\right] \\ &\leq & u_{i}^{T,r}(0) - e^{-rT} g\left(X_{T}^{0,i,\lambda^{\varepsilon}}\right) - e^{-rT} \frac{C}{r} \end{split}$$

Proof.

Let us consider $\varepsilon > 0$ and λ^{ε} such that

$$u_{i}^{r}-\varepsilon \leq \mathbb{E}\left[-\int_{0}^{\infty} e^{-rt} L\left(X_{t}^{0,i,\lambda^{\varepsilon}},\left(\lambda_{t}^{\varepsilon}\left(X_{t}^{0,i,\lambda^{\varepsilon}},j\right)\right)_{j\in\mathcal{V}\left(X_{t}^{0,i,\lambda^{\varepsilon}}\right)}\right) dt\right]$$

We have

$$\begin{split} u_{i}^{r} &- \varepsilon &\leq & \mathbb{E}\left[-\int_{0}^{T} e^{-rt} L\left(x_{t}^{0,i,\lambda^{\varepsilon}}, \left(\lambda_{t}^{\varepsilon}\left(x_{t}^{0,i,\lambda^{\varepsilon}},j\right)\right)_{j\in\mathcal{V}}\left(x_{t}^{0,i,\lambda^{\varepsilon}}\right)\right) dt\right] \\ &+ \mathbb{E}\left[-\int_{T}^{\infty} e^{-rt} L\left(x_{t}^{T}, x_{T}^{0,i,\lambda^{\varepsilon}}, \lambda^{\varepsilon}, \left(\lambda_{t}^{\varepsilon}\left(x_{t}^{T}, x_{T}^{0,i,\lambda^{\varepsilon}}, \lambda^{\varepsilon},j\right)\right)_{j\in\mathcal{V}}\left(x_{t}^{T}, x_{T}^{0,i,\lambda^{\varepsilon}}, \lambda^{\varepsilon}\right)\right) dt\right] \\ &\leq & u_{i}^{T,r}(0) - e^{-rT} g\left(x_{T}^{0,i,\lambda^{\varepsilon}}\right) - e^{-rT} \frac{c}{r} \end{split}$$

So $\liminf_{T\to+\infty} u_i^{T,r}(0) \ge u_i^r - \varepsilon$.

Proof.

By sending ε to 0, we obtain $\lim_{T\to+\infty} u_i^{T,r}(0) = u_i^r$.

Proof.

By sending ε to 0, we obtain $\lim_{T\to+\infty} u_i^{T,r}(0) = u_i^r$. We easily see that

$$\forall i \in \mathcal{I}, \forall s, t \in \mathbb{R}_+, \forall T > t, u_i^{T+s,r}(t) = u_i^{T+s-t,r}(0) = V_i^{T,r}(t-s).$$

Proof.

By sending ε to 0, we obtain $\lim_{T\to+\infty} u_i^{T,r}(0) = u_i^r$. We easily see that

$$\forall i \in \mathcal{I}, \forall s, t \in \mathbb{R}_+, \forall T > t, u_i^{T+s,r}(t) = u_i^{T+s-t,r}(0) = V_i^{T,r}(t-s).$$

Therefore

$$\forall (i,t) \in \mathcal{I} \times \mathbb{R}_+, \lim_{T \to +\infty} u_i^{T,r}(t) = u_i^r = \lim_{s \to -\infty} V_i^{T,r}(s)$$

Proof.

By sending ε to 0, we obtain $\lim_{T\to+\infty} u_i^{T,r}(0) = u_i^r$. We easily see that

$$\forall i \in \mathcal{I}, \forall s, t \in \mathbb{R}_+, \forall T > t, u_i^{T+s,r}(t) = u_i^{T+s-t,r}(0) = V_i^{T,r}(t-s).$$

Therefore

$$\forall (i,t) \in \mathcal{I} \times \mathbb{R}_+, \lim_{T \to +\infty} u_i^{T,r}(t) = u_i^r = \lim_{s \to -\infty} V_i^{T,r}(s)$$

Using the ODEs, we see that $\frac{d}{dt} \left(V_i^{\mathcal{T},r} \right)_{i \in \mathcal{I}}$ has a finite limit in $-\infty$. But, then, that limit is equal to 0.

Proof.

By sending ε to 0, we obtain $\lim_{T\to+\infty} u_i^{T,r}(0) = u_i^r$. We easily see that

$$\forall i \in \mathcal{I}, \forall s, t \in \mathbb{R}_+, \forall T > t, u_i^{T+s,r}(t) = u_i^{T+s-t,r}(0) = V_i^{T,r}(t-s).$$

Therefore

$$\forall (i,t) \in \mathcal{I} \times \mathbb{R}_+, \lim_{T \to +\infty} u_i^{T,r}(t) = u_i^r = \lim_{s \to -\infty} V_i^{T,r}(s)$$

Using the ODEs, we see that $\frac{d}{dt} \left(V_i^{\mathcal{T},r} \right)_{i \in \mathcal{I}}$ has a finite limit in $-\infty$. But, then, that limit is equal to 0.

By passing to the limit in the ODEs, we obtain

$$-ru_{i}^{r}+H\left(i,\left(u_{j}^{r}-u_{i}^{r}\right)_{j\in\mathcal{V}(i)}\right)=0,\quad\forall i\in\mathcal{I}.$$

The limit case $r \rightarrow 0$

For studying the asymptotic behavior (as $T \to +\infty$) in the case r = 0, a first step consists in studying what happens when $r \to 0$ in the above.

Our goal is to prove the following proposition:

Proposition

We have:

•
$$\exists \gamma \in \mathbb{R}, \forall i \in \mathcal{I}, \lim_{r \to 0} ru_i^r = \gamma.$$

- There exists a sequence (r_n)_{n∈N} converging towards 0 such that ∀i ∈ I, (u_i^{r_n} - u₁^{r_n})_{n∈N} is convergent.
- For all $i \in \mathcal{I}$, if $\xi_i = \lim_{n \to +\infty} u_i^{r_n} u_1^{r_n}$, then we have

$$-\gamma + H\left(i, \left(\xi_j - \xi_i\right)_{j \in \mathcal{V}(i)}\right) = 0.$$

Lemma

Lemma

We have:

1. $\forall i \in \mathcal{I}, r \in \mathbb{R}^*_+ \mapsto ru^r_i$ is bounded;

2. $\forall i \in \mathcal{I}, \forall j \in \mathcal{V}(i), r \in \mathbb{R}^*_+ \mapsto u^r_i - u^r_i$ is bounded.

Lemma

We have:

1. $\forall i \in \mathcal{I}, r \in \mathbb{R}^*_+ \mapsto ru^r_i \text{ is bounded};$

2. $\forall i \in \mathcal{I}, \forall j \in \mathcal{V}(i), r \in \mathbb{R}^*_+ \mapsto u^r_i - u^r_i$ is bounded.

Proof.

Let us choose $(\lambda(i,j))_{i\in\mathcal{I},j\in\mathcal{V}(i)}\in\mathcal{A}$ as in the non-degeneracy assumption.

Lemma

We have:

1. $\forall i \in \mathcal{I}, r \in \mathbb{R}^*_+ \mapsto ru^r_i \text{ is bounded};$

2. $\forall i \in \mathcal{I}, \forall j \in \mathcal{V}(i), r \in \mathbb{R}^*_+ \mapsto u^r_i - u^r_i$ is bounded.

Proof.

Let us choose $(\lambda(i,j))_{i\in\mathcal{I},j\in\mathcal{V}(i)}\in\mathcal{A}$ as in the non-degeneracy assumption.

By definition of u_i^r we have

$$\begin{aligned} u_i^r &\geq & \mathbb{E}\left[-\int_0^{+\infty} e^{-rt} L\left(X_t^{0,i,\lambda}, \left(\lambda\left(X_t^{0,i,\lambda},j\right)\right)_{j\in\mathcal{V}\left(X_t^{0,i,\lambda}\right)}\right) dt\right] \\ &\geq & \int_0^{+\infty} e^{-rt} \inf_k - L\left(k, (\lambda(k,j))_{j\in\mathcal{V}(k)}\right) dt \\ &\geq & \frac{1}{r} \inf_k - L\left(k, (\lambda(k,j))_{j\in\mathcal{V}(k)}\right). \end{aligned}$$

Proof.

From the (lower) boundedness of the functions $(L(i, \cdot))_{i \in \mathcal{I}}$, we also have for all $(\lambda(i, j))_{i \in \mathcal{I}, j \in \mathcal{V}(i)}$ that

$$\mathbb{E}\left[-\int_{0}^{+\infty} e^{-rt} L\left(X_{t}^{0,i,\lambda},\left(\lambda\left(X_{t}^{0,i,\lambda},j\right)\right)_{j\in\mathcal{V}\left(X_{t}^{0,i,\lambda}\right)}\right)dt\right]$$

$$\leq -\underline{C}\int_{0}^{+\infty} e^{-rt} dt = -\frac{\underline{C}}{r}.$$

Therefore, $u_i^r \leq -\frac{C}{r}$.

Proof.

From the (lower) boundedness of the functions $(L(i, \cdot))_{i \in \mathcal{I}}$, we also have for all $(\lambda(i, j))_{i \in \mathcal{I}, j \in \mathcal{V}(i)}$ that

$$\mathbb{E}\left[-\int_{0}^{+\infty} e^{-rt} L\left(X_{t}^{0,i,\lambda},\left(\lambda\left(X_{t}^{0,i,\lambda},j\right)\right)_{j\in\mathcal{V}\left(X_{t}^{0,i,\lambda}\right)}\right)dt\right]$$

$$\leq -\underline{C}\int_{0}^{+\infty} e^{-rt} dt = -\frac{\underline{C}}{r}.$$

Therefore, $u_i^r \leq -\frac{C}{r}$.

We conclude that $r \mapsto ru_i^r$ is bounded.

Proof.

Take a family of positive intensities $(\lambda(i,j))_{i\in\mathcal{I},j\in\mathcal{V}(i)}$ as in the non-degeneracy assumption.

Proof.

Take a family of positive intensities $(\lambda(i,j))_{i \in \mathcal{I}, j \in \mathcal{V}(i)}$ as in the non-degeneracy assumption.

Because the finite graph is connected, for all $(i,j) \in \mathcal{I}^2$ the stopping time defined by $\tau^{ij} = \inf \left\{ t > 0 \middle| X_t^{0,i,\lambda} = j \right\}$ verifies $\mathbb{E}\left[\tau^{ij}\right] < +\infty$.

Proof.

Take a family of positive intensities $(\lambda(i,j))_{i \in \mathcal{I}, j \in \mathcal{V}(i)}$ as in the non-degeneracy assumption.

Because the finite graph is connected, for all $(i,j) \in \mathcal{I}^2$ the stopping time defined by $\tau^{ij} = \inf \left\{ t > 0 \middle| X_t^{0,i,\lambda} = j \right\}$ verifies $\mathbb{E} \left[\tau^{ij} \right] < +\infty$. So $\forall (i,j) \in \mathcal{I}^2$, we have

$$\begin{split} u_i^r + \frac{\underline{C}}{r} &\geq \mathbb{E}\left[\int_0^{\tau^{ij}} e^{-rt} \left(-L\left(X_t^{0,i,\lambda}, \left(\lambda\left(X_t^{0,i,\lambda}, j\right)\right)_{j \in \mathcal{V}\left(X_t^{0,i,\lambda}\right)}\right) + \underline{C}\right) dt \\ &+ e^{-r\tau^{ij}} \left(u_j^r + \frac{\underline{C}}{r}\right)\right] \\ &\geq \quad \mathbb{E}\left[\int_0^{\tau^{ij}} e^{-rt} dt\right] \left(\inf_k - L\left(k, (\lambda(k,j))_{j \in \mathcal{V}(k)}\right) + \underline{C}\right) + \mathbb{E}\left[e^{-r\tau^{ij}}\right] \left(u_j^r + \frac{\underline{C}}{r}\right) \\ &\geq \quad \mathbb{E}\left[\tau^{ij}\right] \left(\inf_k - L\left(k, (\lambda(k,j))_{j \in \mathcal{V}(k)}\right) + \underline{C}\right) + u_j^r + \frac{\underline{C}}{r}. \end{split}$$

Proof.

Take a family of positive intensities $(\lambda(i,j))_{i \in \mathcal{I}, j \in \mathcal{V}(i)}$ as in the non-degeneracy assumption.

Because the finite graph is connected, for all $(i,j) \in \mathcal{I}^2$ the stopping time defined by $\tau^{ij} = \inf \left\{ t > 0 \middle| X_t^{0,i,\lambda} = j \right\}$ verifies $\mathbb{E} \left[\tau^{ij} \right] < +\infty$. So $\forall (i,j) \in \mathcal{I}^2$, we have

A second lemma to study $r \rightarrow 0$

We now come to a comparison principle:

We now come to a comparison principle:

Lemma

Let $\varepsilon > 0$. Let $(v_i)_{i \in \mathcal{I}}$ and $(w_i)_{i \in \mathcal{I}}$ be such that

$$-\varepsilon v_i + H\left(i, (v_j - v_i)_{j \in \mathcal{V}(i)}\right) \ge -\varepsilon w_i + H\left(i, (w_j - w_i)_{j \in \mathcal{V}(i)}\right), \quad \forall i \in \mathcal{I}.$$

Then $\forall i \in \mathcal{I}, v_i \leq w_i$.

Proof.

Let us consider $(z_i)_{i \in \mathcal{I}} = (v_i - w_i)_{i \in \mathcal{I}}$.

Proof.

Let us consider $(z_i)_{i \in \mathcal{I}} = (v_i - w_i)_{i \in \mathcal{I}}$.

Let us choose $i^* \in \mathcal{I}$ such that $z_{i^*} = \max_{i \in \mathcal{I}} z_i$.

Proof.

Let us consider $(z_i)_{i \in \mathcal{I}} = (v_i - w_i)_{i \in \mathcal{I}}$. Let us choose $i^* \in \mathcal{I}$ such that $z_{i^*} = \max_{i \in \mathcal{I}} z_i$. By definition of i^* , we know that

$$\forall j \in \mathcal{V}(i^*), v_{i^*} - w_{i^*} \geq v_j - w_j$$

i.e.

$$\forall j \in \mathcal{V}(i^*), v_j - v_{i^*} \leq w_j - w_{i^*}$$

Proof.

Let us consider $(z_i)_{i \in \mathcal{I}} = (v_i - w_i)_{i \in \mathcal{I}}$. Let us choose $i^* \in \mathcal{I}$ such that $z_{i^*} = \max_{i \in \mathcal{I}} z_i$. By definition of i^* , we know that

$$\forall j \in \mathcal{V}(i^*), v_{i^*} - w_{i^*} \geq v_j - w_j$$

i.e.

$$\forall j \in \mathcal{V}(i^*), v_j - v_{i^*} \leq w_j - w_{i^*}$$

Because $H(i^*, \cdot)$ is nondecreasing

$$H\left(i^{*},(v_{j}-v_{i^{*}})_{j\in\mathcal{V}(i^{*})}\right) \leq H\left(i^{*},(w_{j}-w_{i^{*}})_{j\in\mathcal{V}(i^{*})}\right)$$

Proof.

Let us consider $(z_i)_{i \in \mathcal{I}} = (v_i - w_i)_{i \in \mathcal{I}}$. Let us choose $i^* \in \mathcal{I}$ such that $z_{i^*} = \max_{i \in \mathcal{I}} z_i$. By definition of i^* , we know that

$$\forall j \in \mathcal{V}(i^*), v_{i^*} - w_{i^*} \geq v_j - w_j$$

i.e.

$$\forall j \in \mathcal{V}(i^*), v_j - v_{i^*} \leq w_j - w_{i^*}$$

Because $H(i^*, \cdot)$ is nondecreasing

$$H\left(i^{*},(v_{j}-v_{i^{*}})_{j\in\mathcal{V}(i^{*})}\right) \leq H\left(i^{*},(w_{j}-w_{i^{*}})_{j\in\mathcal{V}(i^{*})}\right)$$

We have therefore $\varepsilon(v_{i^*} - w_{i^*}) \leq 0$, so

$$\forall i \in \mathcal{I}, v_i - w_i \leq v_{i^*} - w_{i^*} \leq 0.$$

The last lemma to prove the result is:

The last lemma to prove the result is:

Lemma

Let $\eta, \mu \in \mathbb{R}$. Let $(v_i)_{i \in \mathcal{I}}$ and $(w_i)_{i \in \mathcal{I}}$ be such that

$$\begin{aligned} &-\eta + H\left(i, (\mathbf{v}_j - \mathbf{v}_i)_{j \in \mathcal{V}(i)}\right) = 0, \quad \forall i \in \mathcal{I}, \\ &-\mu + H\left(i, (\mathbf{w}_j - \mathbf{w}_i)_{j \in \mathcal{V}(i)}\right) = 0, \quad \forall i \in \mathcal{I}. \end{aligned}$$

Then $\eta = \mu$.

Proof.

By contradiction, we can assume $\eta > \mu$ (up to an exchange).

Proof.

By contradiction, we can assume $\eta>\mu$ (up to an exchange). Let

$$C = \sup_{i \in \mathcal{I}} (w_i - v_i) + 1$$

 and

$$\varepsilon = \frac{\eta - \mu}{\sup_{i \in \mathcal{I}} (w_i - v_i) - \inf_{i \in \mathcal{I}} (w_i - v_i) + 1} = \frac{\eta - \mu}{C + \sup_{i \in \mathcal{I}} (v_i - w_i)}.$$

Proof.

By contradiction, we can assume $\eta>\mu$ (up to an exchange). Let

$$C = \sup_{i \in \mathcal{I}} (w_i - v_i) + 1$$

and

$$\varepsilon = \frac{\eta - \mu}{\sup_{i \in \mathcal{I}} (w_i - v_i) - \inf_{i \in \mathcal{I}} (w_i - v_i) + 1} = \frac{\eta - \mu}{C + \sup_{i \in \mathcal{I}} (v_i - w_i)}.$$

From these definitions, we have

 $\forall i \in \mathcal{I}, \quad v_i + C > w_i \quad \text{and} \quad 0 \leq \varepsilon (v_i - w_i + C) \leq \eta - \mu.$

Proof.

By contradiction, we can assume $\eta>\mu$ (up to an exchange). Let

$$C = \sup_{i \in \mathcal{I}} (w_i - v_i) + 1$$

and

$$\varepsilon = \frac{\eta - \mu}{\sup_{i \in \mathcal{I}} (w_i - v_i) - \inf_{i \in \mathcal{I}} (w_i - v_i) + 1} = \frac{\eta - \mu}{C + \sup_{i \in \mathcal{I}} (v_i - w_i)}.$$

From these definitions, we have

 $\forall i \in \mathcal{I}, \quad v_i + C > w_i \quad \text{and} \quad 0 \leq \varepsilon (v_i - w_i + C) \leq \eta - \mu.$

We obtain

$$\varepsilon(v_i - w_i + C) \leq H\left(i, (v_j - v_i)_{j \in \mathcal{V}(i)}\right) - H\left(i, (w_j - w_i)_{j \in \mathcal{V}(i)}\right)$$

Reorganizing the terms, we have

$$-\varepsilon w_i + H\left(i, (w_j - w_i)_{j \in \mathcal{V}(i)}\right) \leq -\varepsilon (v_i + C) + H\left(i, ((v_j + C) - (v_i + C))_{j \in \mathcal{V}(i)}\right).$$

Reorganizing the terms, we have

$$-\varepsilon w_i + H\left(i, (w_j - w_i)_{j \in \mathcal{V}(i)}\right) \leq -\varepsilon (v_i + C) + H\left(i, ((v_j + C) - (v_i + C))_{j \in \mathcal{V}(i)}\right).$$

From the previous lemma it follows that $\forall i \in \mathcal{I}, v_i + C \leq w_i$, in contradiction with the definition of *C*.

Reorganizing the terms, we have

$$-\varepsilon w_i + H\left(i, (w_j - w_i)_{j \in \mathcal{V}(i)}\right) \leq -\varepsilon (v_i + C) + H\left(i, ((v_j + C) - (v_i + C))_{j \in \mathcal{V}(i)}\right).$$

From the previous lemma it follows that $\forall i \in \mathcal{I}, v_i + C \leq w_i$, in contradiction with the definition of *C*.

We conclude $\eta = \mu$.

We are now ready to prove our proposition:

Proposition

We have:

- $\exists \gamma \in \mathbb{R}, \forall i \in \mathcal{I}, \lim_{r \to 0} ru_i^r = \gamma.$
- There exists a sequence $(r_n)_{n \in \mathbb{N}}$ converging towards 0 such that $\forall i \in \mathcal{I}, (u_i^{r_n} u_1^{r_n})_{n \in \mathbb{N}}$ is convergent.
- For all $i \in \mathcal{I}$, if $\xi_i = \lim_{n \to +\infty} u_i^{r_n} u_1^{r_n}$, then we have

$$-\gamma + H\left(i, \left(\xi_j - \xi_i\right)_{j \in \mathcal{V}(i)}\right) = 0.$$

From the first lemma, we can consider a sequence $(r_n)_{n\in\mathbb{N}}$ converging towards 0, such that

$$r_n u_i^{r_n} \to \gamma_i$$

and

$$u_i^{r_n}-u_1^{r_n}\to \xi_i.$$

From the first lemma, we can consider a sequence $(r_n)_{n\in\mathbb{N}}$ converging towards 0, such that

$$r_n u_i^{r_n} \to \gamma_i$$

and

$$u_i^{r_n}-u_1^{r_n}\to\xi_i.$$

We have

$$0 = \lim_{n \to +\infty} r_n(u_i^{r_n} - u_1^{r_n}) = \lim_{n \to +\infty} r_n u_i^{r_n} - \lim_{n \to +\infty} r_n u_1^{r_n} = \gamma_i - \gamma_1.$$

From the first lemma, we can consider a sequence $(r_n)_{n\in\mathbb{N}}$ converging towards 0, such that

$$r_n u_i^{r_n} \to \gamma_i$$

and

$$u_i^{r_n}-u_1^{r_n}\to\xi_i.$$

We have

$$0 = \lim_{n \to +\infty} r_n(u_i^{r_n} - u_1^{r_n}) = \lim_{n \to +\infty} r_n u_i^{r_n} - \lim_{n \to +\infty} r_n u_1^{r_n} = \gamma_i - \gamma_1.$$

Therefore, $\gamma_i = \gamma$ is independent of *i*.

Passing to the limit when $n \to +\infty$ in

$$-r_n u_i^{r_n} + H\left(i, \left(u_j^{r_n} - u_i^{r_n}\right)_{j \in \mathcal{V}(i)}\right) = 0$$

Passing to the limit when $n \to +\infty$ in

$$-r_n u_i^{r_n} + H\left(i, \left(u_j^{r_n} - u_i^{r_n}\right)_{j \in \mathcal{V}(i)}\right) = 0$$

we obtain

$$-\gamma + H\left(i, \left(\xi_j - \xi_i\right)_{j \in \mathcal{V}(i)}\right) = 0.$$

Passing to the limit when $n \to +\infty$ in

$$-r_n u_i^{r_n} + H\left(i, \left(u_j^{r_n} - u_i^{r_n}\right)_{j \in \mathcal{V}(i)}\right) = 0$$

we obtain

$$-\gamma + H\left(i, (\xi_j - \xi_i)_{j \in \mathcal{V}(i)}\right) = 0.$$

To complete the proof, we need to prove that γ is independent of the choice of the sequence $(r_n)_{n \in \mathbb{N}}$: this is a consequence of third lemma.

• The equation

$$-\gamma + H\left(i, \left(\xi_j - \xi_i\right)_{j \in \mathcal{V}(i)}\right) = 0$$

is central in the study of the limit $T \to +\infty$ when r = 0.

• The equation

$$-\gamma + H\left(i, \left(\xi_j - \xi_i\right)_{j \in \mathcal{V}(i)}\right) = 0$$

is central in the study of the limit $T \to +\infty$ when r = 0.

• In the above equation, γ is unique (third lemma).

• The equation

$$-\gamma + H\left(i, (\xi_j - \xi_i)_{j \in \mathcal{V}(i)}\right) = 0$$

is central in the study of the limit $T \to +\infty$ when r = 0.

- In the above equation, γ is unique (third lemma).
- Under some additional assumptions (ξ_i)_i can be unique up a constant.

When the Hamiltonian functions are increasing

Proposition

Assume that $\forall i \in \mathcal{I}, H(i, \cdot)$ is increasing with respect to each coordinate. Let $(v_i)_{i \in \mathcal{I}}$ and $(w_i)_{i \in \mathcal{I}}$ be such that

$$\begin{aligned} &-\gamma + H\left(i, (v_j - v_i)_{j \in \mathcal{V}(i)}\right) = 0, \quad \forall i \in \mathcal{I}, \\ &-\gamma + H\left(i, (w_j - w_i)_{j \in \mathcal{V}(i)}\right) = 0, \quad \forall i \in \mathcal{I}. \end{aligned}$$

Then $\exists C, \forall i \in \mathcal{I}, w_i = v_i + C$, *i.e.* uniqueness is true up to a constant.

When the Hamiltonian functions are increasing

When the Hamiltonian functions are increasing

Proof.

Let us consider $C = \sup_{i \in \mathcal{I}} w_i - v_i$.

Proof.

Let us consider $C = \sup_{i \in \mathcal{I}} w_i - v_i$.

By contradiction, assume there exists $j \in \mathcal{I}$ such that $v_j + C > w_j$.

Proof.

Let us consider $C = \sup_{i \in \mathcal{I}} w_i - v_i$.

By contradiction, assume there exists $j \in \mathcal{I}$ such that $v_j + C > w_j$.

Because the graph is connected, we can find $i^* \in \mathcal{I}$ such that $v_{i^*} + C = w_{i^*}$ and such that there exists $j^* \in \mathcal{V}(i^*)$ satisfying $v_{j^*} + C > w_{j^*}$.

Proof.

Let us consider $C = \sup_{i \in \mathcal{I}} w_i - v_i$.

By contradiction, assume there exists $j \in \mathcal{I}$ such that $v_j + C > w_j$.

Because the graph is connected, we can find $i^* \in \mathcal{I}$ such that $v_{i^*} + C = w_{i^*}$ and such that there exists $j^* \in \mathcal{V}(i^*)$ satisfying $v_{j^*} + C > w_{j^*}$.

The strict monotonicity of the Hamiltonian functions implies that

$$H\left(i^{*},((v_{j}+C)-(v_{i^{*}}+C))_{j\in\mathcal{V}(i^{*})}\right)>H\left(i,(w_{j}-w_{i^{*}})_{j\in\mathcal{V}(i^{*})}\right)$$

in contradiction with the definition of $(v_i)_{i \in \mathcal{I}}$ and $(w_i)_{i \in \mathcal{I}}$.

Proof.

Let us consider $C = \sup_{i \in \mathcal{I}} w_i - v_i$.

By contradiction, assume there exists $j \in \mathcal{I}$ such that $v_j + C > w_j$.

Because the graph is connected, we can find $i^* \in \mathcal{I}$ such that $v_{i^*} + C = w_{i^*}$ and such that there exists $j^* \in \mathcal{V}(i^*)$ satisfying $v_{j^*} + C > w_{j^*}$.

The strict monotonicity of the Hamiltonian functions implies that

$$H\left(i^{*},((v_{j}+C)-(v_{i^{*}}+C))_{j\in\mathcal{V}(i^{*})}\right)>H\left(i,(w_{j}-w_{i^{*}})_{j\in\mathcal{V}(i^{*})}\right)$$

in contradiction with the definition of $(v_i)_{i \in \mathcal{I}}$ and $(w_i)_{i \in \mathcal{I}}$.

Therefore
$$\forall i \in \mathcal{I}, w_i = v_i + C$$
.

A general theory for optimal control on graphs – Asymptotics when r = 0

• Compared to the case r > 0, the case r = 0 is more subtle and more complex.

- Compared to the case r > 0, the case r = 0 is more subtle and more complex.
- $u_i^{T,0}(0)$ is not indeed the right "object", but rather $u_i^{T,0}(0) \gamma T$ that will converge towards a finite limit

- Compared to the case r > 0, the case r = 0 is more subtle and more complex.
- $u_i^{T,0}(0)$ is not indeed the right "object", but rather $u_i^{T,0}(0) \gamma T$ that will converge towards a finite limit $\rightarrow \gamma$ will appear to be the average gain per unit of time.

- Compared to the case r > 0, the case r = 0 is more subtle and more complex.
- $u_i^{T,0}(0)$ is not indeed the right "object", but rather $u_i^{T,0}(0) \gamma T$ that will converge towards a finite limit $\rightarrow \gamma$ will appear to be the average gain per unit of time.
- To study the problem, we consider a change of variables:

$$\forall i \in \mathcal{I}, U_i : t \in \mathbb{R}^*_+ \mapsto u_i^{T,0}(T-t)$$

- Compared to the case r > 0, the case r = 0 is more subtle and more complex.
- $u_i^{T,0}(0)$ is not indeed the right "object", but rather $u_i^{T,0}(0) \gamma T$ that will converge towards a finite limit $\rightarrow \gamma$ will appear to be the average gain per unit of time.
- To study the problem, we consider a change of variables:

$$\forall i \in \mathcal{I}, U_i : t \in \mathbb{R}^*_+ \mapsto u_i^{T,0}(T-t)$$

This function solves

$$-rac{d}{dt}U_i(t)+H\left(i,\left(U_j(t)-U_i(t)
ight)_{j\in\mathcal{V}(i)}
ight)=0,\quadorall(i,t)\in\mathcal{I} imes\mathbb{R}_+$$

with $\forall i \in \mathcal{I}$, $U_i(0) = g(i)$.

Towards convergence

For any constant C, let us introduce

$$w^{C}: (i,t) \in \mathcal{I} \times [0,+\infty) \mapsto w_{i}^{C}(t) = \gamma t + \xi_{i} + C$$

For any constant C, let us introduce

$$w^{C}: (i,t) \in \mathcal{I} \times [0,+\infty) \mapsto w_{i}^{C}(t) = \gamma t + \xi_{i} + C$$

We have

$$-\frac{d}{dt}w_i^{\mathcal{C}}(t) + H\left(i, \left(w_j^{\mathcal{C}}(t) - w_i^{\mathcal{C}}(t)\right)_{j \in \mathcal{V}(i)}\right)$$

= $-\gamma + H\left(i, (\xi_j - \xi_i)_{j \in \mathcal{V}(i)}\right)$
= 0

Towards convergence

The ODEs for ${\it U}$ satisfy a comparison priciple similar to that proved earlier.

The ODEs for ${\it U}$ satisfy a comparison priciple similar to that proved earlier.

We can build a lower bound w^{C_1} and an upper bound w^{C_2} by:

The ODEs for U satisfy a comparison priciple similar to that proved earlier.

We can build a lower bound w^{C_1} and an upper bound w^{C_2} by:

$$w_i^{C_1}(t) = \gamma t + \xi_i + C_1 \text{ with } C_1 = \min_j(g(j) - \xi_j) \\ w_i^{C_2}(t) = \gamma t + \xi_i + C_2 \text{ with } C_2 = \max_j(g(j) - \xi_j)$$

The ODEs for U satisfy a comparison priciple similar to that proved earlier.

We can build a lower bound w^{C_1} and an upper bound w^{C_2} by:

$$w_i^{C_1}(t) = \gamma t + \xi_i + C_1 \text{ with } C_1 = \min_j(g(j) - \xi_j) w_i^{C_2}(t) = \gamma t + \xi_i + C_2 \text{ with } C_2 = \max_j(g(j) - \xi_j)$$

We deduce that $\hat{v} : t \in [0, +\infty) \mapsto U(t) - \gamma t \vec{1}$ is bounded \rightarrow Our goal is to show that it converges when $t \rightarrow +\infty$ under the assumption of strict monotonicity for H.

A slightly modified equation and its properties

 \hat{v} solves the slightly modified equation

$$-rac{d}{dt}\hat{v}_i(t) - \gamma + H\left(i, (\hat{v}_j(t) - \hat{v}_i(t))_{j \in \mathcal{V}(i)}
ight) = 0, \quad orall(i, t) \in \mathcal{I} imes \mathbb{R}_+$$
with $orall i \in \mathcal{I}, \quad \hat{v}_i(0) = g(i).$

 \hat{v} solves the slightly modified equation

$$-rac{d}{dt}\hat{v}_i(t) - \gamma + H\left(i, (\hat{v}_j(t) - \hat{v}_i(t))_{j \in \mathcal{V}(i)}
ight) = 0, \quad \forall (i, t) \in \mathcal{I} imes \mathbb{R}_+$$

with $\forall i \in \mathcal{I}, \quad \hat{v}_i(0) = g(i).$

We introduce for all $(s, y) \in \mathbb{R}_+ \times \mathbb{R}^N$ the equation

$$\begin{aligned} &-\frac{d}{dt}\hat{y}_{i}(t)-\gamma+H\left(i,(\hat{y}_{j}(t)-\hat{y}_{i}(t))_{j\in\mathcal{V}(i)}\right)=0,\forall(i,t)\in\mathcal{I}\times[s,+\infty),\\ &(E_{s,y})\end{aligned}$$
with $\hat{y}_{i}(s)=y_{i},\forall i\in\mathcal{I}.$

First property: comparison principle

Proposition (Comparison principle)

Let $s \in \mathbb{R}_+$. Let $(\underline{y}_i)_{i \in \mathcal{I}}$ and $(\overline{y}_i)_{i \in \mathcal{I}}$ be two continuously differentiable functions on $[s, +\infty)$ such that

$$-\frac{d}{dt}\underline{y}_{i}(t) - \gamma + H\left(i,\left(\underline{y}_{j}(t) - \underline{y}_{i}(t)\right)_{j\in\mathcal{V}(i)}\right) \geq 0, \quad \forall (i,t)\in\mathcal{I}\times[s,+\infty), \\ -\frac{d}{dt}\overline{y}_{i}(t) - \gamma + H\left(i,\left(\overline{y}_{j}(t) - \overline{y}_{i}(t)\right)_{j\in\mathcal{V}(i)}\right) \leq 0, \quad \forall (i,t)\in\mathcal{I}\times[s,+\infty), \\ \text{and } \forall i\in\mathcal{I}, \underline{y}_{i}(s)\leq\overline{y}_{i}(s). \end{cases}$$

Then $\underline{y}_i(t) \leq \overline{y}_i(t), \forall (i, t) \in \mathcal{I} \times [s, +\infty).$

Proposition (Strong maximum principle)

Let $s \in \mathbb{R}_+$. Let $(\underline{y}_i)_{i \in \mathcal{I}}$ and $(\overline{y}_i)_{i \in \mathcal{I}}$ be two continuously differentiable functions on $[s, +\infty)$ such that

$$\begin{aligned} &-\frac{d}{dt}\underline{y}_{i}(t)-\gamma+H\left(i,\left(\underline{y}_{j}(t)-\underline{y}_{i}(t)\right)_{j\in\mathcal{V}(i)}\right)=0, \quad \forall (i,t)\in\mathcal{I}\times[s,+\infty), \\ &-\frac{d}{dt}\overline{y}_{i}(t)-\gamma+H\left(i,\left(\overline{y}_{j}(t)-\overline{y}_{i}(t)\right)_{j\in\mathcal{V}(i)}\right)=0, \quad \forall (i,t)\in\mathcal{I}\times[s,+\infty), \\ &\text{and }\underline{y}(s)\leq\overline{y}(s), \text{ i.e. } \forall j\in\mathcal{I},\underline{y}_{j}(s)\leq\overline{y}_{j}(s) \text{ and } \exists i\in\mathcal{I},\underline{y}_{i}(s)<\overline{y}_{i}(s). \end{aligned}$$
Then $\underline{y}_{i}(t)<\overline{y}_{i}(t), \forall (i,t)\in\mathcal{I}\times(s,+\infty).$

Proof.

If there exists $(i, \overline{t}) \in \mathcal{I} \times (s, +\infty)$ such that $\underline{y}_i(\overline{t}) = \overline{y}_i(\overline{t})$, then \overline{t} is a maximizer of the function $t \in (s, +\infty) \mapsto \underline{y}_i(t) - \overline{y}_i(t)$. Hence, $\frac{d}{dt}\underline{y}_i(\overline{t}) = \frac{d}{dt}\overline{y}_i(\overline{t})$.

Proof.

If there exists $(i, \overline{t}) \in \mathcal{I} \times (s, +\infty)$ such that $\underline{y}_i(\overline{t}) = \overline{y}_i(\overline{t})$, then \overline{t} is a maximizer of the function $t \in (s, +\infty) \mapsto \underline{y}_i(t) - \overline{y}_i(t)$. Hence, $\frac{d}{dt}\underline{y}_i(\overline{t}) = \frac{d}{dt}\overline{y}_i(\overline{t})$.

We deduce that

$$\underline{y}_{i}(\overline{t}) = \overline{y}_{i}(\overline{t}) \implies H\left(i, \left(\underline{y}_{i}(\overline{t}) - \underline{y}_{i}(\overline{t})\right)_{j \in \mathcal{V}(i)}\right) = H\left(i, \left(\overline{y}_{i}(\overline{t}) - \overline{y}_{i}(\overline{t})\right)_{j \in \mathcal{V}(i)}\right)$$

Proof.

If there exists $(i, \overline{t}) \in \mathcal{I} \times (s, +\infty)$ such that $\underline{y}_i(\overline{t}) = \overline{y}_i(\overline{t})$, then \overline{t} is a maximizer of the function $t \in (s, +\infty) \mapsto \underline{y}_i(t) - \overline{y}_i(t)$. Hence, $\frac{d}{dt}\underline{y}_i(\overline{t}) = \frac{d}{dt}\overline{y}_i(\overline{t})$.

We deduce that

$$\underline{y}_{i}(\overline{t}) = \overline{y}_{i}(\overline{t}) \implies H\left(i, \left(\underline{y}_{j}(\overline{t}) - \underline{y}_{i}(\overline{t})\right)_{j \in \mathcal{V}(i)}\right) = H\left(i, \left(\overline{y}_{j}(\overline{t}) - \overline{y}_{i}(\overline{t})\right)_{j \in \mathcal{V}(i)}\right)$$

Because $H(i, \cdot)$ is increasing,

$$\underline{y}_i(\overline{t}) = \overline{y}_i(\overline{t}) \implies \forall j \in \mathcal{V}(i), \underline{y}_j(\overline{t}) = \overline{y}_j(\overline{t})$$

Proof.

If there exists $(i, \overline{t}) \in \mathcal{I} \times (s, +\infty)$ such that $\underline{y}_i(\overline{t}) = \overline{y}_i(\overline{t})$, then \overline{t} is a maximizer of the function $t \in (s, +\infty) \mapsto \underline{y}_i(t) - \overline{y}_i(t)$. Hence, $\frac{d}{dt}\underline{y}_i(\overline{t}) = \frac{d}{dt}\overline{y}_i(\overline{t})$.

We deduce that

$$\underline{y}_{i}(\overline{t}) = \overline{y}_{i}(\overline{t}) \implies H\left(i, \left(\underline{y}_{j}(\overline{t}) - \underline{y}_{i}(\overline{t})\right)_{j \in \mathcal{V}(i)}\right) = H\left(i, \left(\overline{y}_{j}(\overline{t}) - \overline{y}_{i}(\overline{t})\right)_{j \in \mathcal{V}(i)}\right)$$

Because $H(i, \cdot)$ is increasing,

$$\underline{y}_{i}(\overline{t}) = \overline{y}_{i}(\overline{t}) \implies \forall j \in \mathcal{V}(i), \underline{y}_{j}(\overline{t}) = \overline{y}_{j}(\overline{t})$$

As the graph is connected,

$$\underline{y}_i(\overline{t}) = \overline{y}_i(\overline{t}) \implies \forall j \in \mathcal{I}, \underline{y}_j(\overline{t}) = \overline{y}_j(\overline{t})$$

Proof.

If there exists $(i, \overline{t}) \in \mathcal{I} \times (s, +\infty)$ such that $\underline{y}_i(\overline{t}) = \overline{y}_i(\overline{t})$, we define

$$F = \left\{ t \in (s, +\infty), \forall j \in \mathcal{I}, \underline{y}_j(t) = \overline{y}_j(t)
ight\}.$$

Proof.

If there exists $(i, \overline{t}) \in \mathcal{I} \times (s, +\infty)$ such that $\underline{y}_i(\overline{t}) = \overline{y}_i(\overline{t})$, we define

$${\sf F}=\left\{t\in(s,+\infty), orall j\in {\cal I}, \underline{y}_j(t)=\overline{y}_j(t)
ight\}.$$

We have:

Proof.

If there exists $(i, \overline{t}) \in \mathcal{I} \times (s, +\infty)$ such that $\underline{y}_i(\overline{t}) = \overline{y}_i(\overline{t})$, we define

$${\mathcal F} = \left\{t\in (s,+\infty), orall j\in {\mathcal I}, {\underline y}_{\overline j}(t) = \overline y_j(t)
ight\}.$$

We have:

• *F* is nonempty since $\overline{t} \in F$.

Proof.

If there exists $(i, \overline{t}) \in \mathcal{I} \times (s, +\infty)$ such that $\underline{y}_i(\overline{t}) = \overline{y}_i(\overline{t})$, we define

$${\mathcal F} = \left\{t\in (s,+\infty), orall j\in {\mathcal I}, {\underline y}_{\overline j}(t) = \overline y_j(t)
ight\}.$$

We have:

- *F* is nonempty since $\overline{t} \in F$.
- F is also closed.

Second property: strong maximum principle

Proof.

If there exists $(i, \overline{t}) \in \mathcal{I} \times (s, +\infty)$ such that $\underline{y}_i(\overline{t}) = \overline{y}_i(\overline{t})$, we define

$$\mathcal{F} = \left\{ t \in (s, +\infty), \forall j \in \mathcal{I}, \underline{y}_j(t) = \overline{y}_j(t)
ight\}.$$

We have:

- F is nonempty since $\overline{t} \in F$.
- F is also closed.
- $\underline{y}(s) \leq \overline{y}(s)$ implies that $t^* = \inf F = \min F > s$.

Second property: strong maximum principle

Proof.

If there exists $(i, \overline{t}) \in \mathcal{I} \times (s, +\infty)$ such that $\underline{y}_i(\overline{t}) = \overline{y}_i(\overline{t})$, we define

$$F = \left\{ t \in (s, +\infty), \forall j \in \mathcal{I}, \underline{y}_j(t) = \overline{y}_j(t) \right\}.$$

We have:

- F is nonempty since $\overline{t} \in F$.
- F is also closed.
- $y(s) \leq \overline{y}(s)$ implies that $t^* = \inf F = \min F > s$.

 \underline{y} and \overline{y} are two local solutions of the Cauchy problem $(E_{t^*,\underline{y}(t^*)})$ so they are equal in a neighborhood of t^* ... which contradicts the definition of t^* .

Second property: strong maximum principle

Proof.

If there exists $(i, \overline{t}) \in \mathcal{I} \times (s, +\infty)$ such that $\underline{y}_i(\overline{t}) = \overline{y}_i(\overline{t})$, we define

$${\mathcal F} = \left\{t \in (s,+\infty), orall j \in {\mathcal I}, {\underline y}_j(t) = \overline y_j(t)
ight\}.$$

We have:

- F is nonempty since $\overline{t} \in F$.
- F is also closed.
- $y(s) \leq \overline{y}(s)$ implies that $t^* = \inf F = \min F > s$.

<u>y</u> and \overline{y} are two local solutions of the Cauchy problem $(E_{t^*,\underline{y}(t^*)})$ so they are equal in a neighborhood of t^* ... which contradicts the definition of t^* .

We conclude that

$$\underline{y}_i(t) < \overline{y}_i(t), \forall (i,t) \in \mathcal{I} \times (s, +\infty).$$

For all $t \in \mathbb{R}_+$, we introduce the operator $S(t) : y \in \mathbb{R}^N \mapsto \hat{y}(t) \in \mathbb{R}^N$, where \hat{y} is the solution of $(E_{0,y})$. For all $t \in \mathbb{R}_+$, we introduce the operator $S(t) : y \in \mathbb{R}^N \mapsto \hat{y}(t) \in \mathbb{R}^N$, where \hat{y} is the solution of $(E_{0,y})$.

Proposition

S satisfies the following properties:

- $\forall t, t' \in \mathbb{R}_+, S(t) \circ S(t') = S(t+t') = S(t') \circ S(t).$
- $\forall t \in \mathbb{R}_+, \forall x, y \in \mathbb{R}^N, \|S(t)(x) S(t)(y)\|_{\infty} \le \|x y\|_{\infty}$. In particular, S(t) is continuous.

Proof.

The first point is trivial (Picard-Lindelöf).

Proof.

The first point is trivial (Picard-Lindelöf).

For the second point, let us introduce

 $\underline{y}: t \in \mathbb{R}_+ \mapsto S(t)(x) \text{ and } \overline{y}: t \in \mathbb{R}_+ \mapsto S(t)(y) + \|x - y\|_\infty \vec{1}$

Proof.

The first point is trivial (Picard-Lindelöf).

For the second point, let us introduce

 $y: t \in \mathbb{R}_+ \mapsto S(t)(x)$ and $\overline{y}: t \in \mathbb{R}_+ \mapsto S(t)(y) + \|x - y\|_{\infty} \vec{1}$

We have $\underline{y}(0) = x \leq y + \|x - y\|_{\infty} \vec{1} = \overline{y}(0)$, so

 $\forall t \in \mathbb{R}_+, \underline{y}(t) \leq \overline{y}(t)$

Proof.

The first point is trivial (Picard-Lindelöf).

For the second point, let us introduce

 $y: t \in \mathbb{R}_+ \mapsto S(t)(x)$ and $\overline{y}: t \in \mathbb{R}_+ \mapsto S(t)(y) + \|x - y\|_{\infty} \vec{1}$

We have $\underline{y}(0) = x \leq y + \|x - y\|_{\infty} \vec{1} = \overline{y}(0)$, so

 $\forall t \in \mathbb{R}_+, \underline{y}(t) \leq \overline{y}(t)$

i.e.

$$orall t\in \mathbb{R}_+, \quad S(t)(x)\leq S(t)(y)+\left\|x-y
ight\|_\infty ec{1}.$$

Proof.

The first point is trivial (Picard-Lindelöf).

For the second point, let us introduce

 $y: t \in \mathbb{R}_+ \mapsto S(t)(x)$ and $\overline{y}: t \in \mathbb{R}_+ \mapsto S(t)(y) + \|x - y\|_{\infty} \vec{1}$

We have $\underline{y}(0) = x \leq y + \|x - y\|_{\infty} \vec{1} = \overline{y}(0)$, so

 $\forall t \in \mathbb{R}_+, \underline{y}(t) \leq \overline{y}(t)$

i.e.

$$\forall t \in \mathbb{R}_+, \quad S(t)(x) \leq S(t)(y) + \|x - y\|_{\infty} \vec{1}.$$

Reversing the role of x and y we obtain

$$\left\|S(t)(x)-S(t)(y)
ight\|_{\infty}\leq \left\|x-y
ight\|_{\infty}$$
 .

In order to study the asymptotic behavior of \hat{v} , we define the function

$$q:t\in \mathbb{R}_+\mapsto q(t)=\sup_{i\in \mathcal{I}}(\hat{v}_i(t)-\xi_i).$$

In order to study the asymptotic behavior of \hat{v} , we define the function

$$q:t\in \mathbb{R}_+\mapsto q(t)=\sup_{i\in \mathcal{I}}(\hat{v}_i(t)-\xi_i).$$

We have the following lemma:

In order to study the asymptotic behavior of \hat{v} , we define the function

$$q:t\in \mathbb{R}_+\mapsto q(t)=\sup_{i\in \mathcal{I}}(\hat{v}_i(t)-\xi_i).$$

We have the following lemma:

Lemma

q is a nonincreasing function, bounded from below. We denote by $q_{\infty} = \lim_{t \to +\infty} q(t)$ its lower bound.

Proof.

Let $s \in \mathbb{R}_+$. Let us define $\underline{y} : (i, t) \in \mathcal{I} \times [s, \infty) \mapsto \hat{v}_i(t)$ and $\overline{y} : (i, t) \in \mathcal{I} \times [s, \infty) \mapsto q(s) + \xi_i$.

Proof.

Let $s \in \mathbb{R}_+$. Let us define $\underline{y} : (i, t) \in \mathcal{I} \times [s, \infty) \mapsto \hat{v}_i(t)$ and $\overline{y} : (i, t) \in \mathcal{I} \times [s, \infty) \mapsto q(s) + \xi_i$.

We have $orall i \in \mathcal{I}, \underline{y}_i(s) \leq \overline{y}_i(s)$ and

$$-\frac{d}{dt}\overline{y}_{i}(t) - \gamma + H\left(i,\left(\overline{y}_{j}(t) - \overline{y}_{i}(t)\right)_{j\in\mathcal{V}(i)}\right)$$
$$= -\gamma + H\left(i,\left(\xi_{j} - \xi_{i}\right)_{j\in\mathcal{V}(i)}\right) = 0, \forall (i,t)\in\mathcal{I}\times[s,+\infty).$$

We conclude that $\forall (i, t) \in \mathcal{I} \times [s, +\infty), \underline{y}_i(t) \leq \overline{y}_i(t)$, i.e. $\hat{v}_i(t) \leq q(s) + \xi_i$. In particular $q(t) \leq q(s), \forall t \geq s$.

Proof.

Let $s \in \mathbb{R}_+$. Let us define $\underline{y} : (i, t) \in \mathcal{I} \times [s, \infty) \mapsto \hat{v}_i(t)$ and $\overline{y} : (i, t) \in \mathcal{I} \times [s, \infty) \mapsto q(s) + \xi_i$.

We have $orall i \in \mathcal{I}, \underline{y}_i(s) \leq \overline{y}_i(s)$ and

$$-\frac{d}{dt}\overline{y}_{i}(t) - \gamma + H\left(i,\left(\overline{y}_{j}(t) - \overline{y}_{i}(t)\right)_{j\in\mathcal{V}(i)}\right)$$
$$= -\gamma + H\left(i,\left(\xi_{j} - \xi_{i}\right)_{j\in\mathcal{V}(i)}\right) = 0, \forall (i,t) \in \mathcal{I} \times [s, +\infty).$$

We conclude that $\forall (i, t) \in \mathcal{I} \times [s, +\infty), \underline{y}_i(t) \leq \overline{y}_i(t)$, i.e. $\hat{v}_i(t) \leq q(s) + \xi_i$. In particular $q(t) \leq q(s), \forall t \geq s$.

Because \hat{v} is bounded, so is q and its limit $q_{\infty} = \lim_{t \to +\infty} q(t)$.

Theorem

The asymptotic behavior of \hat{v} is given by

$$\forall i \in \mathcal{I}, \lim_{t \to +\infty} \hat{v}_i(t) = \xi_i + q_{\infty}.$$

Proof.

As \hat{v} is bounded, there exists $(t_n)_n$ converging towards $+\infty$ such that $\hat{v}(t_n) \rightarrow \hat{v}_{\infty} \leq \xi + q_{\infty} \vec{1}$.

Proof.

As \hat{v} is bounded, there exists $(t_n)_n$ converging towards $+\infty$ such that $\hat{v}(t_n) \rightarrow \hat{v}_{\infty} \leq \xi + q_{\infty} \vec{1}$.

Because \hat{v} is bounded and satisfies $(E_{0,y})$ for $y = (y_i)_{i \in \mathcal{I}} = (g(i))_{i \in \mathcal{I}}$, we can apply Arzelà-Ascoli theorem to

$$\mathcal{K} = \left\{ s \in [0,1] \mapsto \hat{v}(t_n+s) | n \in \mathbb{N}
ight\}.$$

Proof.

As \hat{v} is bounded, there exists $(t_n)_n$ converging towards $+\infty$ such that $\hat{v}(t_n) \rightarrow \hat{v}_{\infty} \leq \xi + q_{\infty} \vec{1}$.

Because \hat{v} is bounded and satisfies $(E_{0,y})$ for $y = (y_i)_{i \in \mathcal{I}} = (g(i))_{i \in \mathcal{I}}$, we can apply Arzelà-Ascoli theorem to

$$\mathcal{K} = \left\{ s \in [0,1] \mapsto \hat{v}(t_n+s) | n \in \mathbb{N}
ight\}.$$

There exists a subsequence $(t_{\phi(n)})_n$ and a function $z \in C^0([0,1], \mathbb{R}^N)$ such that $(s \in [0,1] \mapsto \hat{v} (t_{\phi(n)} + s))_n$ converges uniformly towards z(with $z(0) = \hat{v}_{\infty}$).

Proof.

As \hat{v} is bounded, there exists $(t_n)_n$ converging towards $+\infty$ such that $\hat{v}(t_n) \rightarrow \hat{v}_{\infty} \leq \xi + q_{\infty} \vec{1}$.

Because \hat{v} is bounded and satisfies $(E_{0,y})$ for $y = (y_i)_{i \in \mathcal{I}} = (g(i))_{i \in \mathcal{I}}$, we can apply Arzelà-Ascoli theorem to

$$\mathcal{K} = \left\{ s \in [0,1] \mapsto \hat{v}(t_n+s) | n \in \mathbb{N}
ight\}.$$

There exists a subsequence $(t_{\phi(n)})_n$ and a function $z \in C^0([0,1], \mathbb{R}^N)$ such that $(s \in [0,1] \mapsto \hat{v} (t_{\phi(n)} + s))_n$ converges uniformly towards z(with $z(0) = \hat{v}_{\infty}$). Using the results on the semi-group, we have that zsolves the ODEs:

$$egin{aligned} orall t\in [0,1], S(t)(z(0)) &= S(t)\left(\lim_{n
ightarrow+\infty}\hat{v}\left(t_{\phi(n)}
ight)
ight) &= \lim_{n
ightarrow+\infty}S(t)\left(\hat{v}\left(t_{\phi(n)}
ight)
ight) \ &= \lim_{n
ightarrow+\infty}\hat{v}\left(t+t_{\phi(n)}
ight) = z(t). \end{aligned}$$

Proof.

Now, if

$$z(0)=\hat{v}_{\infty}\lneq \xi+q_{\infty}ec{1}$$

Proof.

Now, if

$$z(0) = \hat{v}_\infty \lneq \xi + q_\infty ec{1}$$

then the strong maximum principle implies that

$$z(1) < \xi + q_\infty \vec{1}.$$

Proof.

Now, if

$$z(0) = \hat{v}_\infty \lneq \xi + q_\infty ec{1}$$

then the strong maximum principle implies that

$$z(1) < \xi + q_\infty \vec{1}.$$

Therefore there exists $n \in \mathbb{N}$ such that $\hat{v} \left(t_{\phi(n)} + 1 \right) < \xi + q_{\infty} \vec{1}.$

Proof.

Now, if

$$z(0)=\hat{v}_{\infty}\lneq \xi+q_{\infty}ec{1}$$

then the strong maximum principle implies that

$$z(1) < \xi + q_\infty \vec{1}.$$

Therefore there exists $n \in \mathbb{N}$ such that $\hat{v}(t_{\phi(n)} + 1) < \xi + q_{\infty}\vec{1}$. This implies $q(t_{\phi(n)} + 1) < q_{\infty}$: a contradiction.

Proof.

Now, if

$$z(0)=\hat{v}_{\infty}\lneq \xi+q_{\infty}ec{1}$$

then the strong maximum principle implies that

$$z(1) < \xi + q_\infty \vec{1}.$$

Therefore there exists $n \in \mathbb{N}$ such that $\hat{v}(t_{\phi(n)} + 1) < \xi + q_{\infty}\vec{1}$. This implies $q(t_{\phi(n)} + 1) < q_{\infty}$: a contradiction.

This means that $z(0) = \hat{v}_{\infty} = \xi + q_{\infty} \vec{1}$.

Proof.

Now, if

$$z(0)=\hat{v}_{\infty}\lneq \xi+q_{\infty}ec{1}$$

then the strong maximum principle implies that

$$z(1) < \xi + q_\infty \vec{1}.$$

Therefore there exists $n \in \mathbb{N}$ such that $\hat{v}(t_{\phi(n)} + 1) < \xi + q_{\infty}\vec{1}$. This implies $q(t_{\phi(n)} + 1) < q_{\infty}$: a contradiction.

This means that
$$z(0) = \hat{v}_{\infty} = \xi + q_{\infty} \vec{1}$$
.

In other words, for any sequence $(t_n)_n$ converging towards $+\infty$ such that $(\hat{v}(t_n))_n$ is convergent, the limit is $\xi + q_\infty \vec{1}$.

Proof.

Now, if

$$z(0)=\hat{v}_{\infty}\lneq \xi+q_{\infty}ec{1}$$

then the strong maximum principle implies that

$$z(1) < \xi + q_\infty \vec{1}.$$

Therefore there exists $n \in \mathbb{N}$ such that $\hat{v}(t_{\phi(n)} + 1) < \xi + q_{\infty}\vec{1}$. This implies $q(t_{\phi(n)} + 1) < q_{\infty}$: a contradiction.

This means that
$$z(0) = \hat{v}_{\infty} = \xi + q_{\infty} \vec{1}$$
.

In other words, for any sequence $(t_n)_n$ converging towards $+\infty$ such that $(\hat{v}(t_n))_n$ is convergent, the limit is $\xi + q_\infty \vec{1}$.

This means that $\forall i \in \mathcal{I}, \lim_{t \to +\infty} \hat{v}_i(t) = \xi_i + q_{\infty}.$

Conclusion for the optimal control problem

Conclusion for the optimal control problem

Corollary

The asymptotic behavior of the value functions associated with our problem when r = 0 is given by

$$orall i \in \mathcal{I}, orall t \in \mathbb{R}_+, u_i^{\mathcal{T},r}(t) = \gamma(\mathcal{T}-t) + \xi_i + q_\infty + \mathop{o}_{\mathcal{T} o +\infty}(1).$$

The limit points of the associated optimal controls for all $t \in \mathbb{R}_+$ as $T \to +\infty$ are feedback control functions verifying $\forall i \in \mathcal{I}, \forall j \in \mathcal{V}(i)$:

$$\lambda(i,j) \in \underset{\left(\lambda_{ij}\right)_{j \in \mathcal{V}(i)} \in \mathbb{R}_{+}^{|\mathcal{V}(i)|}}{\operatorname{argmax}} \left(\left(\sum_{j \in \mathcal{V}(i)} \lambda_{ij}(\xi_{j} - \xi_{i}) \right) - L\left(i, \left(\lambda_{ij}\right)_{j \in \mathcal{V}(i)}\right) \right)$$

Corollary

The asymptotic behavior of the value functions associated with our problem when r = 0 is given by

$$orall i \in \mathcal{I}, orall t \in \mathbb{R}_+, u_i^{\mathcal{T},r}(t) = \gamma(\mathcal{T}-t) + \xi_i + q_\infty + \mathop{o}_{\mathcal{T} o +\infty}(1).$$

The limit points of the associated optimal controls for all $t \in \mathbb{R}_+$ as $T \to +\infty$ are feedback control functions verifying $\forall i \in \mathcal{I}, \forall j \in \mathcal{V}(i)$:

$$\lambda(i,j) \in \underset{\left(\lambda_{ij}\right)_{j \in \mathcal{V}(i)} \in \mathbb{R}_{+}^{|\mathcal{V}(i)|}}{\operatorname{argmax}} \left(\left(\sum_{j \in \mathcal{V}(i)} \lambda_{ij}(\xi_{j} - \xi_{i}) \right) - L\left(i, \left(\lambda_{ij}\right)_{j \in \mathcal{V}(i)}\right) \right)$$

Remark: if $(L(i, \cdot))_i$ are convex functions that are strictly convex on their domain, the Hamiltonian functions $(H(i, \cdot))_i$ are differentiable and the optimal controls converge towards the unique element of the above argmax.

What we have seen

• We have seen that optimal control problems on graphs appear naturally.

- We have seen that optimal control problems on graphs appear naturally.
- We have provided, under simple assumptions, a way to characterize optimal controls (with ODEs).

- We have seen that optimal control problems on graphs appear naturally.
- We have provided, under simple assumptions, a way to characterize optimal controls (with ODEs).
- We have generalized the results to the case of infinite horizon problems when r > 0 (stationary problems).

- We have seen that optimal control problems on graphs appear naturally.
- We have provided, under simple assumptions, a way to characterize optimal controls (with ODEs).
- We have generalized the results to the case of infinite horizon problems when r > 0 (stationary problems).
- We have obtained a (difficult) result on the asymptotic behavior far from T when r = 0.

What we have seen

- We have seen that optimal control problems on graphs appear naturally.
- We have provided, under simple assumptions, a way to characterize optimal controls (with ODEs).
- We have generalized the results to the case of infinite horizon problems when r > 0 (stationary problems).
- We have obtained a (difficult) result on the asymptotic behavior far from T when r = 0.

What we are going to see now

What we have seen

- We have seen that optimal control problems on graphs appear naturally.
- We have provided, under simple assumptions, a way to characterize optimal controls (with ODEs).
- We have generalized the results to the case of infinite horizon problems when r > 0 (stationary problems).
- We have obtained a (difficult) result on the asymptotic behavior far from T when r = 0.

What we are going to see now

• A special case where all equations can be transformed into linear ones

What we have seen

- We have seen that optimal control problems on graphs appear naturally.
- We have provided, under simple assumptions, a way to characterize optimal controls (with ODEs).
- We have generalized the results to the case of infinite horizon problems when r > 0 (stationary problems).
- We have obtained a (difficult) result on the asymptotic behavior far from T when r = 0.

What we are going to see now

• A special case where all equations can be transformed into linear ones

 \rightarrow Intensive use of linear algebra and matrix analysis.

What we have seen

- We have seen that optimal control problems on graphs appear naturally.
- We have provided, under simple assumptions, a way to characterize optimal controls (with ODEs).
- We have generalized the results to the case of infinite horizon problems when r > 0 (stationary problems).
- We have obtained a (difficult) result on the asymptotic behavior far from T when r = 0.

What we are going to see now

 A special case where all equations can be transformed into linear ones

 \rightarrow Intensive use of linear algebra and matrix analysis.

• An important application to market making: the solution to Avellaneda-Stoikov equations.

Entropic costs: when nonlinearities vanish

We previously considered a general framework. In what follows we consider a specific case of interest:

We previously considered a general framework. In what follows we consider a specific case of interest:

Assumptions

We previously considered a general framework. In what follows we consider a specific case of interest:

Assumptions

• No discount rate: r = 0

We previously considered a general framework. In what follows we consider a specific case of interest:

Assumptions

- No discount rate: r = 0
- Functions *L* of the following form:

$$L(i,\cdot): (\lambda_{ij})_{j\in\mathcal{V}(i)} \in \mathbb{R}^{|\mathcal{V}(i)|}_+ \mapsto L\left(i, (\lambda_{ij})_{j\in\mathcal{V}(i)}\right)$$

where

$$L\left(i, (\lambda_{ij})_{j \in \mathcal{V}(i)}
ight) = -h(i) + \sum_{j \in \mathcal{V}(i)} (\lambda_{ij} \log(\lambda_{ij}) + b_{ij} \lambda_{ij})$$

We previously considered a general framework. In what follows we consider a specific case of interest:

Assumptions

- No discount rate: r = 0
- Functions *L* of the following form:

$$L(i,\cdot): (\lambda_{ij})_{j\in\mathcal{V}(i)} \in \mathbb{R}^{|\mathcal{V}(i)|}_+ \mapsto L\left(i, (\lambda_{ij})_{j\in\mathcal{V}(i)}\right)$$

where

$$L\left(i, (\lambda_{ij})_{j \in \mathcal{V}(i)}
ight) = -h(i) + \sum_{j \in \mathcal{V}(i)} (\lambda_{ij} \log(\lambda_{ij}) + b_{ij}\lambda_{ij})$$

• These functions *L* satisfy the assumptions of the previous sections.

We previously considered a general framework. In what follows we consider a specific case of interest:

Assumptions

- No discount rate: r = 0
- Functions *L* of the following form:

$$L(i,\cdot): (\lambda_{ij})_{j\in\mathcal{V}(i)} \in \mathbb{R}^{|\mathcal{V}(i)|}_+ \mapsto L\left(i, (\lambda_{ij})_{j\in\mathcal{V}(i)}\right)$$

where

$$L\left(i, (\lambda_{ij})_{j \in \mathcal{V}(i)}
ight) = -h(i) + \sum_{j \in \mathcal{V}(i)} (\lambda_{ij} \log(\lambda_{ij}) + b_{ij}\lambda_{ij})$$

- These functions *L* satisfy the assumptions of the previous sections.
- Because of the term $\sum_{j \in \mathcal{V}(i)} \lambda_{ij} \log(\lambda_{ij})$, we talk of entropic costs.

The interest of this family of cost functions lies in the resulting form of the Hamiltonian functions:

The interest of this family of cost functions lies in the resulting form of the Hamiltonian functions:

Proposition

 $\forall i, \forall p = (p_j)_{j \in \mathcal{V}(i)} \in \mathbb{R}^{|\mathcal{V}(i)|},$

$$H(i,p) = h(i) + \sum_{j \in \mathcal{V}(i)} e^{-1-b_{ij}} e^{p_j}.$$

Moreover, the supremum in the definition of H(i, p) is reached when

$$orall j \in \mathcal{V}(i), \quad \lambda_{ij} = \lambda_{ij}^* = e^{-1-b_{ij}}e^{p_j}.$$

Proof.

$$H(i,p) = h(i) + \sup_{(\lambda_{ij})_{j \in \mathcal{V}(i)} \in \mathbb{R}_+^{|\mathcal{V}(i)|}} \sum_{j \in \mathcal{V}(i)} (\lambda_{ij}p_j - (\lambda_{ij}\log(\lambda_{ij}) + b_{ij}\lambda_{ij})).$$

Proof.

$$H(i,p) = h(i) + \sup_{(\lambda_{ij})_{j \in \mathcal{V}(i)} \in \mathbb{R}^{|\mathcal{V}(i)|}_+} \sum_{j \in \mathcal{V}(i)} (\lambda_{ij} p_j - (\lambda_{ij} \log(\lambda_{ij}) + b_{ij} \lambda_{ij})).$$

The first order condition associated with the supremum writes:

Proof.

$$H(i,p) = h(i) + \sup_{(\lambda_{ij})_{j \in \mathcal{V}(i)} \in \mathbb{R}^{|\mathcal{V}(i)|}_+} \sum_{j \in \mathcal{V}(i)} (\lambda_{ij} p_j - (\lambda_{ij} \log(\lambda_{ij}) + b_{ij} \lambda_{ij})).$$

The first order condition associated with the supremum writes:

$$orall j \in \mathcal{V}(i), p_j - \log(\lambda_{ij}^*) - 1 - b_{ij} = 0$$

Proof.

$$H(i,p) = h(i) + \sup_{(\lambda_{ij})_{j \in \mathcal{V}(i)} \in \mathbb{R}^{|\mathcal{V}(i)|}_+} \sum_{j \in \mathcal{V}(i)} (\lambda_{ij} p_j - (\lambda_{ij} \log(\lambda_{ij}) + b_{ij} \lambda_{ij})).$$

The first order condition associated with the supremum writes:

$$orall j \in \mathcal{V}(i), p_j - \log(\lambda_{ij}^*) - 1 - b_{ij} = 0$$

i.e.

$$\forall j \in \mathcal{V}(i), \quad \lambda_{ij}^* = e^{-1-b_{ij}}e^{p_j}.$$

Proof.

$$H(i,p) = h(i) + \sup_{(\lambda_{ij})_{j \in \mathcal{V}(i)} \in \mathbb{R}^{|\mathcal{V}(i)|}_+} \sum_{j \in \mathcal{V}(i)} (\lambda_{ij} p_j - (\lambda_{ij} \log(\lambda_{ij}) + b_{ij} \lambda_{ij})).$$

The first order condition associated with the supremum writes:

$$orall j \in \mathcal{V}(i), p_j - \log(\lambda_{ij}^*) - 1 - b_{ij} = 0$$

i.e.

$$\forall j \in \mathcal{V}(i), \quad \lambda_{ij}^* = e^{-1-b_{ij}}e^{p_j}.$$

Plugging that formula, we obtain

$$H(i,p)=h(i)+\sum_{j\in\mathcal{V}(i)}e^{-1-b_{ij}}e^{p_j}.$$

Hamilton-Jacobi / Bellman equations

Hamilton-Jacobi / Bellman equations

The ODEs characterizing the value function writes:

 $\forall (i, t) \in \mathcal{I} \times [0, T],$ $\frac{d}{dt} V_i^T(t) + H\left(i, \left(V_j^T(t) - V_i^T(t)\right)_{j \in \mathcal{V}(i)}\right) = 0$ with terminal condition $V_i^T(T) = g(i), \quad \forall i \in \mathcal{I}.$

Hamilton-Jacobi / Bellman equations

The ODEs characterizing the value function writes:

$$\forall (i, t) \in \mathcal{I} \times [0, T],$$

$$\frac{d}{dt} V_i^T(t) + H\left(i, \left(V_j^T(t) - V_i^T(t)\right)_{j \in \mathcal{V}(i)}\right) = 0$$
with terminal condition $V_i^T(T) = g(i), \quad \forall i \in \mathcal{I}.$

In the present case:

$$\begin{aligned} \forall (i,t) \in \mathcal{I} \times [0,T], \\ & \frac{d}{dt} V_i^T(t) + h(i) + \sum_{j \in \mathcal{V}(i)} e^{-1-b_{ij}} \exp\left(V_j^T(t) - V_i^T(t)\right) = 0 \end{aligned} \\ \end{aligned}$$
with terminal condition $V_i^T(T) = g(i), \quad \forall i \in \mathcal{I}. \end{aligned}$

Change of variables

Change of variables

Let us introduce the change of variables

$$\forall (i, t) \in \mathcal{I} \times [0, T], w_i^T(t) = \exp\left(V_i^T(t)\right)$$

Change of variables

Let us introduce the change of variables

$$\forall (i, t) \in \mathcal{I} \times [0, T], w_i^T(t) = \exp\left(V_i^T(t)\right)$$

Then the system of ODEs writes

$$\forall (i, t) \in \mathcal{I} \times [0, T],$$

$$\frac{d}{dt} w_i^T(t) + h(i) w_i^T(t) + \sum_{j \in \mathcal{V}(i)} e^{-1 - b_{ij}} w_j^T(t) = 0$$

with terminal condition $w_i^T(T) = e^{g(i)}, \quad \forall i \in \mathcal{I}.$

Change of variables

Let us introduce the change of variables

$$\forall (i, t) \in \mathcal{I} \times [0, T], w_i^T(t) = \exp\left(V_i^T(t)\right)$$

Then the system of ODEs writes

$$\forall (i, t) \in \mathcal{I} \times [0, T],$$

$$\frac{d}{dt} w_i^T(t) + h(i) w_i^T(t) + \sum_{j \in \mathcal{V}(i)} e^{-1 - b_{ij}} w_j^T(t) = 0$$

with terminal condition $w_i^T(T) = e^{g(i)}, \quad \forall i \in \mathcal{I}.$

This is a system of linear ODEs!

Solution to the ODEs

Solution to the ODEs

Proposition

Let $B = (B_{ij})_{(i,j) \in \mathcal{I}^2}$ be the matrix defined by

$$B_{ij} = \begin{cases} e^{-1-b_{ij}}, & \text{if } j \in \mathcal{V}(i), \\ h(i), & \text{if } j = i, \\ 0, & \text{otherwise.} \end{cases}$$

Let \mathfrak{g} be the column vector $(e^{g(1)}, \ldots, e^{g(N)})'$.

Then, $w^T : t \in [0, T] \mapsto w^T(t) = e^{B(T-t)}\mathfrak{g}$ is the unique solution to the above system of ODEs

Solution to the ODEs

Proposition

Let $B = (B_{ij})_{(i,j) \in \mathcal{I}^2}$ be the matrix defined by

$$B_{ij} = \begin{cases} e^{-1-b_{ij}}, & \text{if } j \in \mathcal{V}(i), \\ h(i), & \text{if } j = i, \\ 0, & \text{otherwise.} \end{cases}$$

Let \mathfrak{g} be the column vector $(e^{g(1)}, \ldots, e^{g(N)})'$.

Then, $w^T : t \in [0, T] \mapsto w^T(t) = e^{B(T-t)}\mathfrak{g}$ is the unique solution to the above system of ODEs

Remark: $w^{T}(t) > 0$ (as a vector) is a consequence of the positiveness of

$$e^{\sup_i |h(i)|(T-t)}w^T(t) = e^{(B + \sup_i |h(i)|I_N)(T-t)}\mathfrak{g} > 0$$

Theorem

We have:

- $\forall i \in \mathcal{I}, \forall t \in [0, T], u_i^T(t) = \log(w_i^T(t)).$
- The optimal controls are given in feedback form by:

$$orall i \in \mathcal{I}, orall j \in \mathcal{V}(i), orall t \in [0,T], \quad \lambda^*_t(i,j) = e^{-1-b_{ij}} rac{w_j^T(t)}{w_j^T(t)}.$$

Theorem

We have:

- $\forall i \in \mathcal{I}, \forall t \in [0, T], u_i^T(t) = \log(w_i^T(t)).$
- The optimal controls are given in feedback form by:

$$orall i \in \mathcal{I}, orall j \in \mathcal{V}(i), orall t \in [0,T], \quad \lambda^*_t(i,j) = e^{-1-b_{ij}} rac{w_j^T(t)}{w_j^T(t)}.$$

A question remains: what can we say about the asymptotic regime?

Theorem

We have:

- $\forall i \in \mathcal{I}, \forall t \in [0, T], u_i^T(t) = \log(w_i^T(t)).$
- The optimal controls are given in feedback form by:

$$orall i \in \mathcal{I}, orall j \in \mathcal{V}(i), orall t \in [0,T], \quad \lambda_t^*(i,j) = e^{-1-b_{ij}} rac{w_j^T(t)}{w_i^T(t)}.$$

A question remains: what can we say about the asymptotic regime?

We can guess that the ergodic constant γ and the vector ξ are linked to spectral properties of *B*: a matrix with nonnegative off-diagonal entries.

Classical results on nonnegative matrices

Given two matrices $A, B \in M_{n,p}(\mathbb{C})$, we say that

- $A \leq B$ if the entries of B A are all real and nonnegative.
- A < B if the entries of B A are all real and positive.

We say that A is nonnegative (resp. positive) if $A \ge 0$ (resp. A > 0).

Given two matrices $A, B \in M_{n,p}(\mathbb{C})$, we say that

- $A \leq B$ if the entries of B A are all real and nonnegative.
- A < B if the entries of B A are all real and positive.

We say that A is nonnegative (resp. positive) if $A \ge 0$ (resp. A > 0).

For $A = (a_{ij})_{ij} \in M_{n,p}(\mathbb{C})$, we define $|A| = (|a_{ij}|)_{ij}$

Given two matrices $A, B \in M_{n,p}(\mathbb{C})$, we say that

- $A \leq B$ if the entries of B A are all real and nonnegative.
- A < B if the entries of B A are all real and positive.

We say that A is nonnegative (resp. positive) if $A \ge 0$ (resp. A > 0).

For
$$A = (a_{ij})_{ij} \in M_{n,p}(\mathbb{C})$$
, we define $|A| = (|a_{ij}|)_{ij}$

Remark: The definitions apply to column vectors (p = 1).

Given a matrix $A \in M_n(\mathbb{C})$ we define

- Sp(A) the set of its eigenvalues.
- $\operatorname{Sp}_{\mathbb{R}}(A) = \operatorname{Sp}(A) \cap \mathbb{R}$ the set of its real eigenvalues.
- $\rho(A) = \sup\{|z||z \in Sp(A)\}$ the spectral radius of A.

A first classical result about spectral radius is the following:

A first classical result about spectral radius is the following:

Proposition

Let $A \in M_n(\mathbb{C})$.

$$\lim_{m \to +\infty} A^m = 0 \iff \rho(A) < 1$$

A first classical result about spectral radius is the following:

Proposition

Let $A \in M_n(\mathbb{C})$.

$$\lim_{n \to +\infty} A^m = 0 \iff \rho(A) < 1$$

Proof.

 \Rightarrow is trivial using a Jordan decomposition and looking at diagonal terms.

 \Leftarrow Each Jordan block of A writes $\tilde{A} = \lambda I + J$ where J is nilpotent of index p and $|\lambda| < 1$.

A first classical result about spectral radius is the following:

Proposition

Let $A \in M_n(\mathbb{C})$.

$$\lim_{n \to +\infty} A^m = 0 \iff \rho(A) < 1$$

Proof.

 \Rightarrow is trivial using a Jordan decomposition and looking at diagonal terms.

 $\Leftarrow \text{ Each Jordan block of } A \text{ writes } \tilde{A} = \lambda I + J \text{ where } J \text{ is nilpotent of index } p \text{ and } |\lambda| < 1.$

We have therefore for $m \ge p$:

$$ilde{A}^m = \sum_{k=0}^{p-1} C_m^k \lambda^{m-k} J^k o_{m o +\infty} 0$$

Proposition (Gelfand's formula)

Let $A \in M_n(\mathbb{C})$.

$$\rho(A) = \lim_{m \to +\infty} \|A^m\|^{1/m}$$

for any norm on $M_n(\mathbb{C})$.

Proposition (Gelfand's formula)

Let $A \in M_n(\mathbb{C})$.

$$o(A) = \lim_{m \to +\infty} \|A^m\|^{1/m}$$

for any norm on $M_n(\mathbb{C})$.

Proof.

Because of the equivalence of norms, we easily see that the result needs to be proved for one norm only.

Proposition (Gelfand's formula)

Let $A \in M_n(\mathbb{C})$.

$$\rho(A) = \lim_{m \to +\infty} \|A^m\|^{1/m}$$

for any norm on $M_n(\mathbb{C})$.

Proof.

Because of the equivalence of norms, we easily see that the result needs to be proved for one norm only.

We choose a matrix norm induced by a norm on \mathbb{R}^n .

Proposition (Gelfand's formula)

Let $A \in M_n(\mathbb{C})$.

$$\rho(A) = \lim_{m \to +\infty} \|A^m\|^{1/m}$$

for any norm on $M_n(\mathbb{C})$.

Proof.

Because of the equivalence of norms, we easily see that the result needs to be proved for one norm only.

We choose a matrix norm induced by a norm on \mathbb{R}^n .

If x is an eigenvector of A for the eigenvalue λ with $|\lambda| = \rho(A)$, then

$$\rho(A) \|x\| = \|\lambda x\| = \|Ax\| \le \|A\| \|x\|$$

Proposition (Gelfand's formula)

Let $A \in M_n(\mathbb{C})$.

$$\rho(A) = \lim_{m \to +\infty} \|A^m\|^{1/m}$$

for any norm on $M_n(\mathbb{C})$.

Proof.

Because of the equivalence of norms, we easily see that the result needs to be proved for one norm only.

We choose a matrix norm induced by a norm on \mathbb{R}^n .

If x is an eigenvector of A for the eigenvalue λ with $|\lambda| = \rho(A)$, then

$$\rho(A) \|x\| = \|\lambda x\| = \|Ax\| \le \|A\| \|x\|$$

So $\rho(A) \le ||A||$ and $\rho(A) = \rho(A^m)^{1/m} \le ||A^m||^{1/m}$.

Proof.

Now, for any $\epsilon > 0$, $\rho\left(\frac{A}{\rho(A)+\epsilon}\right) < 1$. Therefore, there exists $m_{\epsilon} \in \mathbb{N}$ such that $\forall m \ge m_{\epsilon}$: $|| \left(A \right) \rangle^{m} ||$

$$\left\| \left(\frac{A}{\rho(A) + \epsilon} \right) \right\| \le 1$$

i.e.

$$\|A^m\|^{1/m} \le \rho(A) + \epsilon.$$

Proof.

Now, for any $\epsilon > 0$, $\rho\left(\frac{A}{\rho(A)+\epsilon}\right) < 1$. Therefore, there exists $m_{\epsilon} \in \mathbb{N}$ such that $\forall m \ge m_{\epsilon}$:

$$\left\| \left(\frac{A}{\rho(A) + \epsilon} \right) \right\| \le 1$$

i.e.

$$|A^m||^{1/m} \le \rho(A) + \epsilon.$$

We conclude that

$$\lim_{m \to +\infty} \|A^m\|^{1/m} = \rho(A)$$

Spectral radius: comparison for nonnegative matrices

Proposition

Let $A, B \in M_n(\mathbb{R})$ and assume $0 \le A \le B$.

Then,

$$\rho(A) \leq \rho(B)$$

Proposition

Let $A, B \in M_n(\mathbb{R})$ and assume $0 \le A \le B$.

Then,

 $\rho(A) \leq \rho(B)$

Proof.

$$0 \le A \le B \Rightarrow 0 \le A^m \le B^m \to \|A^m\| \le \|B^m\|$$

where the norm on matrices is the 2-norm (Frobenius norm).

Proposition

Let $A, B \in M_n(\mathbb{R})$ and assume $0 \le A \le B$.

Then,

 $\rho(A) \leq \rho(B)$

Proof.

$$0 \le A \le B \Rightarrow 0 \le A^m \le B^m \to \|A^m\| \le \|B^m\|$$

where the norm on matrices is the 2-norm (Frobenius norm).

Using Gelfand's formula, we obtain $\rho(A) \leq \rho(B)$.

We now focus on the case of positive matrices. We have a first (important) lemma:

Positive matrices: a first lemma

We now focus on the case of positive matrices. We have a first (important) lemma:

Lemma

Let $A \in M_n(\mathbb{R})$ be a positive matrix. Let $x, y \in \mathbb{R}^n$. $x \le y \text{ and } x \ne y \implies Ax < Ay$ $\implies \exists \epsilon > 0, (1 + \epsilon)Ax < Ay$

Positive matrices: a first lemma

We now focus on the case of positive matrices. We have a first (important) lemma:

Lemma

Let $A \in M_n(\mathbb{R})$ be a positive matrix. Let $x, y \in \mathbb{R}^n$.

> $x \le y \text{ and } x \ne y \implies Ax < Ay$ $\implies \exists \epsilon > 0, (1 + \epsilon)Ax < Ay$

Proof.

For all $i \in \mathcal{I}$, $(A(y - x))_i = \sum_{j=1}^n A_{ij}(y_j - x_j) \ge \underbrace{\min_{k} A_{ik}}_{>0} \underbrace{\sum_{j=1}^n (y_j - x_j)}_{>0} > 0$

Positive matrices: a first lemma

We now focus on the case of positive matrices. We have a first (important) lemma:

Lemma

Let $A \in M_n(\mathbb{R})$ be a positive matrix. Let $x, y \in \mathbb{R}^n$.

 $\begin{array}{ll} x \leq y \ \text{and} \ x \neq y & \Longrightarrow & Ax < Ay \\ & \Longrightarrow & \exists \epsilon > 0, (1 + \epsilon)Ax < Ay \end{array}$

Proof.

For all $i \in \mathcal{I}$, $(A(y-x))_i = \sum_{j=1}^n A_{ij}(y_j - x_j) \ge \underbrace{\min_{k} A_{ik}}_{>0} \underbrace{\sum_{j=1}^n (y_j - x_j)}_{>0} > 0$

So Ax < Ay and there exists $\epsilon > 0$, such that $(1 + \epsilon)Ax < Ay$.

We are now ready to state a fundamental theorem for positive matrices:

We are now ready to state a fundamental theorem for positive matrices:

Theorem (Perron's theorem)

Let $A \in M_n(\mathbb{R})$ be a positive matrix. We have the following:

- $\rho(A) > 0.$
- $\rho(A)$ is an eigenvalue of A.
- the associated eigenspace is of dimension 1 and spanned by a positive vector.
- the algebraic multiplicity of $\rho(A)$ is 1.

Proof.

 $\rho(A) > 0$ as $\operatorname{Tr}(A) > 0$.

Proof.

 $\rho(A) > 0$ as Tr(A) > 0.

Let (λ, x) be an eigenpair with $|\lambda| = \rho(A)$.

Proof.

 $\rho(A) > 0$ as Tr(A) > 0.

Let (λ, x) be an eigenpair with $|\lambda| = \rho(A)$.

$$Ax = \lambda x \implies \rho(A)|x| = |Ax| \le A|x|$$

Proof.

 $\rho(A) > 0$ as Tr(A) > 0.

Let (λ, x) be an eigenpair with $|\lambda| = \rho(A)$.

$$Ax = \lambda x \implies \rho(A)|x| = |Ax| \le A|x|$$

If $\rho(A)|x| \neq A|x|$, there exists $\epsilon > 0$ such that

 $(1+\epsilon)\rho(A)A|x| < A^2|x|$

Proof.

 $\rho(A) > 0$ as Tr(A) > 0.

Let (λ, x) be an eigenpair with $|\lambda| = \rho(A)$.

$$Ax = \lambda x \implies \rho(A)|x| = |Ax| \le A|x|$$

If $\rho(A)|x| \neq A|x|$, there exists $\epsilon > 0$ such that

$$(1+\epsilon)\rho(A)A|x| < A^2|x|$$

So $(1 + \epsilon)\rho(A)^2|x| < A^2|x|$ and we can iterate:

 $(1+\epsilon)^2 \rho(A)^3 |x| = (1+\epsilon)^2 \rho(A)^2 \rho(A) |x| \le (1+\epsilon)^2 \rho(A)^2 A |x| < A^3 |x|$

$$\forall m \ge 2, \quad (1+\epsilon)^{m-1} \rho(A)^m |x| < A^m |x|$$

Proof.

We deduce that for the matrix norm induced by the sup-norm on \mathbb{R}^n :

$$orall m \geq 2, \quad \|A^m\| \geq (1+\epsilon)^{m-1}
ho(A)^m$$

Proof.

We deduce that for the matrix norm induced by the sup-norm on \mathbb{R}^n :

$$\forall m \ge 2, \quad \|A^m\| \ge (1+\epsilon)^{m-1} \rho(A)^m$$

Using Gelfand's formula we obtain $\rho(A) \ge (1 + \epsilon)\rho(A)$... a contradiction.

Proof.

We deduce that for the matrix norm induced by the sup-norm on \mathbb{R}^n :

$$orall m \geq 2, \quad \|A^m\| \geq (1+\epsilon)^{m-1}
ho(A)^m$$

Using Gelfand's formula we obtain $\rho(A) \ge (1 + \epsilon)\rho(A)...$ a contradiction. We conclude

$$\rho(A)|x| = A|x|$$

and

$$|x| \ge 0 \implies \rho(A)|x| = A|x| > 0 \implies |x| > 0.$$

Proof.

We deduce that for the matrix norm induced by the sup-norm on \mathbb{R}^n :

$$\forall m \ge 2, \quad \|A^m\| \ge (1+\epsilon)^{m-1} \rho(A)^m$$

Using Gelfand's formula we obtain $\rho(A) \ge (1 + \epsilon)\rho(A)...$ a contradiction. We conclude

$$\rho(A)|x| = A|x|$$

and

$$|x| \ge 0 \implies
ho(A)|x| = A|x| > 0 \implies |x| > 0.$$

Now, if \tilde{x} is another eigenvector for the eigenvalue $\rho(A)$, we have, as before, that $|\tilde{x}|$ is also an eigenvector for the eigenvalue $\rho(A)$, and

$$\rho(A)|\tilde{x}| = |A\tilde{x}| \le A|\tilde{x}| = \rho(A)|\tilde{x}|$$

Proof.

We deduce that for the matrix norm induced by the sup-norm on \mathbb{R}^n :

$$orall m \geq 2, \quad \|A^m\| \geq (1+\epsilon)^{m-1}
ho(A)^m$$

Using Gelfand's formula we obtain $\rho(A) \ge (1 + \epsilon)\rho(A)...$ a contradiction. We conclude

$$\rho(A)|x| = A|x|$$

and

$$|x| \ge 0 \implies
ho(A)|x| = A|x| > 0 \implies |x| > 0.$$

Now, if \tilde{x} is another eigenvector for the eigenvalue $\rho(A)$, we have, as before, that $|\tilde{x}|$ is also an eigenvector for the eigenvalue $\rho(A)$, and

$$\rho(A)|\tilde{x}| = |A\tilde{x}| \le A|\tilde{x}| = \rho(A)|\tilde{x}|$$

So we have an equality case in the triangular inequality $|A\tilde{x}| \leq A|\tilde{x}|$.

The first coordinate gives that $\arg(A_{1j}\tilde{x}_j)$ is independent of j. As A > 0, we have $\tilde{x} = e^{i\theta}|\tilde{x}|$.

The first coordinate gives that $\arg(A_{1j}\tilde{x}_j)$ is independent of j. As A > 0, we have $\tilde{x} = e^{i\theta}|\tilde{x}|$.

Now, let us consider $c = \min_{|\tilde{x}_i| \neq 0} |x_i| / |\tilde{x}_i|$.

The first coordinate gives that $\arg(A_{1j}\tilde{x}_j)$ is independent of j. As A > 0, we have $\tilde{x} = e^{i\theta}|\tilde{x}|$.

Now, let us consider $c = \min_{|\tilde{x}_i| \neq 0} |x_i| / |\tilde{x}_i|$. If $|x| \neq c |\tilde{x}|$, then

 $|x| \ge c |\tilde{x}| \implies \rho(A)|x| = A|x| > cA|\tilde{x}| = c\rho(A)|\tilde{x}| \implies |x| > c|\tilde{x}|$

which contradicts the definition of c.

The first coordinate gives that $\arg(A_{1j}\tilde{x}_j)$ is independent of j. As A > 0, we have $\tilde{x} = e^{i\theta}|\tilde{x}|$.

Now, let us consider $c = \min_{|\tilde{x}_i| \neq 0} |x_i| / |\tilde{x}_i|$. If $|x| \neq c |\tilde{x}|$, then

$$|x| \ge c | ilde{x}| \implies
ho(A) |x| = A |x| > c A | ilde{x}| = c
ho(A) | ilde{x}| \implies |x| > c | ilde{x}|$$

which contradicts the definition of c.

We conclude that $|x| = c|\tilde{x}| = ce^{-i\theta}\tilde{x}$, i.e. the eigenspace associated with $\rho(A)$ is of dimension 1.

Applying the above reasoning to both A and A', we exhibit two positive vectors u and v such that

$$Au = \rho(A)u$$
 and $A'v = \rho(A)v$.

Applying the above reasoning to both A and A', we exhibit two positive vectors u and v such that

$$Au = \rho(A)u$$
 and $A'v = \rho(A)v$.

u'v > 0 so $\mathbb{R}^n = \operatorname{span}(u) \oplus \operatorname{span}(v)^{\perp}$.

Applying the above reasoning to both A and A', we exhibit two positive vectors u and v such that

$$Au = \rho(A)u$$
 and $A'v = \rho(A)v$.

u'v > 0 so $\mathbb{R}^n = \operatorname{span}(u) \oplus \operatorname{span}(v)^{\perp}$. Since $\operatorname{span}(v)^{\perp}$ is stable by A,

there exists $P \in GL_n(\mathbb{R})$ such that

$$PAP^{-1} = \begin{pmatrix} \rho(A) & 0\\ 0 & \tilde{A} \end{pmatrix}$$

Applying the above reasoning to both A and A', we exhibit two positive vectors u and v such that

$$Au = \rho(A)u$$
 and $A'v = \rho(A)v$.

u'v > 0 so $\mathbb{R}^n = \operatorname{span}(u) \oplus \operatorname{span}(v)^{\perp}$. Since $\operatorname{span}(v)^{\perp}$ is stable by A,

there exists $P \in GL_n(\mathbb{R})$ such that

$$PAP^{-1} = \begin{pmatrix} \rho(A) & 0\\ 0 & \tilde{A} \end{pmatrix}$$

As the eigenspace of A associated with $\rho(A)$ is of dimension 1, $\rho(A)$ cannot be an eigenvalue \tilde{A} .

Applying the above reasoning to both A and A', we exhibit two positive vectors u and v such that

$$Au = \rho(A)u$$
 and $A'v = \rho(A)v$.

u'v > 0 so $\mathbb{R}^n = \operatorname{span}(u) \oplus \operatorname{span}(v)^{\perp}$. Since $\operatorname{span}(v)^{\perp}$ is stable by A,

there exists $P \in GL_n(\mathbb{R})$ such that

$$PAP^{-1} = \begin{pmatrix} \rho(A) & 0\\ 0 & \tilde{A} \end{pmatrix}$$

As the eigenspace of A associated with $\rho(A)$ is of dimension 1, $\rho(A)$ cannot be an eigenvalue \tilde{A} .

We conclude that $\rho(A)$ has algebraic multiplicity 1.

A natural question is "what can be generalized to nonnegative matrices?" .

A natural question is "what can be generalized to nonnegative matrices?" .

A first result is the following:

Proposition

Let $A \in M_n(\mathbb{R})$ be a nonnegative matrix.

Then $\rho(A)$ is an eigenvalue of A and there exists a nonnegative eigenvector associated with $\rho(A)$.

We define $A_p = A + \frac{1}{p}J$ where J is a matrix with all entries equal to 1.

We define $A_p = A + \frac{1}{p}J$ where J is a matrix with all entries equal to 1. By Perron's theorem, there exists for each $p \ge 1$, a positive vector x_p such that

 $A_p x_p = \rho(A_p) x_p \quad ||x_p|| = 1$

We define $A_p = A + \frac{1}{p}J$ where J is a matrix with all entries equal to 1. By Perron's theorem, there exists for each $p \ge 1$, a positive vector x_p such that

$$A_{p}x_{p}=
ho(A_{p})x_{p}\quad \|x_{p}\|=1$$

We can extract a subsequence $x_{p'} \to x$ with $x \ge 0$ and ||x|| = 1.

We define $A_p = A + \frac{1}{p}J$ where J is a matrix with all entries equal to 1. By Perron's theorem, there exists for each $p \ge 1$, a positive vector x_p such that

$$A_{p}x_{p} = \rho(A_{p})x_{p} \quad ||x_{p}|| = 1$$

We can extract a subsequence $x_{p'} \to x$ with $x \ge 0$ and ||x|| = 1.

Because $A \leq A_p \leq A_q$ for $p \geq q$, the sequence $(\rho(A_{p'}))_{p'}$ is nonincreasing and converges towards $\rho \geq \rho(A)$.

Proof.

We define $A_p = A + \frac{1}{p}J$ where J is a matrix with all entries equal to 1. By Perron's theorem, there exists for each $p \ge 1$, a positive vector x_p such that

$$A_p x_p = \rho(A_p) x_p \quad ||x_p|| = 1$$

We can extract a subsequence $x_{p'} \to x$ with $x \ge 0$ and ||x|| = 1.

Because $A \leq A_p \leq A_q$ for $p \geq q$, the sequence $(\rho(A_{p'}))_{p'}$ is nonincreasing and converges towards $\rho \geq \rho(A)$.

We obtain

$$Ax = \rho x \quad \|x\| = 1 \quad x \ge 0$$

Proof.

We define $A_p = A + \frac{1}{p}J$ where J is a matrix with all entries equal to 1. By Perron's theorem, there exists for each $p \ge 1$, a positive vector x_p such that

$$A_p x_p = \rho(A_p) x_p \quad ||x_p|| = 1$$

We can extract a subsequence $x_{p'} \to x$ with $x \ge 0$ and ||x|| = 1.

Because $A \leq A_p \leq A_q$ for $p \geq q$, the sequence $(\rho(A_{p'}))_{p'}$ is nonincreasing and converges towards $\rho \geq \rho(A)$.

We obtain

$$Ax = \rho x \quad \|x\| = 1 \quad x \ge 0$$

As $\rho \ge \rho(A)$ is an eigenvalue, we have $\rho = \rho(A)$.

Let us start with a few definitions:

Let us start with a few definitions:

Definition

For $A \in M_n(\mathbb{C})$ we denote by M(A) the matrix with entries $(1_{a_{ij}\neq 0})_{ij}$.

Let us start with a few definitions:

Definition

For $A \in M_n(\mathbb{C})$ we denote by M(A) the matrix with entries $(1_{a_{ij} \neq 0})_{ij}$.

Definition

For $A \in M_n(\mathbb{C})$ we define $\Gamma(A)$ the directed graph with adjacency matrix M(A)

Let us start with a few definitions:

Definition

For $A \in M_n(\mathbb{C})$ we denote by M(A) the matrix with entries $(1_{a_{ij} \neq 0})_{ij}$.

Definition

For $A \in M_n(\mathbb{C})$ we define $\Gamma(A)$ the directed graph with adjacency matrix M(A)

We shall relate properties of A with properties of $\Gamma(A)$.

Lemma

For $A \in M_n(\mathbb{C})$, $m \in \mathbb{N}$, and $1 \le i, j \le n$, the three following statements are equivalent:

- $(|A|^m)_{ij} > 0$
- $(M(A)^m)_{ij} > 0$
- there exists a path a length m from i to j in the graph $\Gamma(A)$.

Lemma

For $A \in M_n(\mathbb{C})$, $m \in \mathbb{N}$, and $1 \le i, j \le n$, the three following statements are equivalent:

- $(|A|^m)_{ij} > 0$
- $(M(A)^m)_{ij} > 0$
- there exists a path a length m from i to j in the graph $\Gamma(A)$.

Proof.

$$(|A|^m)_{ij} = \sum_{k_1=i,k_2,\ldots,k_{m-1},k_m=j} |a_{k_1k_2}|\cdots |a_{k_{m-1}k_m}|$$

Lemma

For $A \in M_n(\mathbb{C})$, $m \in \mathbb{N}$, and $1 \le i, j \le n$, the three following statements are equivalent:

- $(|A|^m)_{ij} > 0$
- $(M(A)^m)_{ij} > 0$
- there exists a path a length m from i to j in the graph $\Gamma(A)$.

Proof.

$$(|A|^m)_{ij} = \sum_{k_1=i,k_2,\dots,k_{m-1},k_m=j} |a_{k_1k_2}|\cdots |a_{k_{m-1}k_m}|$$

So $(|A|^m)_{ij} > 0$ if and only if there exist $k_1 = i, k_2, \ldots, k_{m-1}, k_m = j$ such that $|a_{k_1k_2}|, \ldots, |a_{k_{m-1}k_m}| \neq 0$,

Lemma

For $A \in M_n(\mathbb{C})$, $m \in \mathbb{N}$, and $1 \le i, j \le n$, the three following statements are equivalent:

- $(|A|^m)_{ij} > 0$
- $(M(A)^m)_{ij} > 0$
- there exists a path a length m from i to j in the graph $\Gamma(A)$.

Proof.

$$(|A|^m)_{ij} = \sum_{k_1=i,k_2,\dots,k_{m-1},k_m=j} |a_{k_1k_2}|\cdots |a_{k_{m-1}k_m}|$$

So $(|A|^m)_{ij} > 0$ if and only if there exist $k_1 = i, k_2, \ldots, k_{m-1}, k_m = j$ such that $|a_{k_1k_2}|, \ldots, |a_{k_{m-1}k_m}| \neq 0$, i.e. if and only if there exists a path a length *m* from *i* to *j* in the graph $\Gamma(A)$.

Lemma

For $A \in M_n(\mathbb{C})$, $m \in \mathbb{N}$, and $1 \le i, j \le n$, the three following statements are equivalent:

- $(|A|^m)_{ij} > 0$
- $(M(A)^m)_{ij} > 0$
- there exists a path a length m from i to j in the graph $\Gamma(A)$.

Proof.

$$(|A|^m)_{ij} = \sum_{k_1=i,k_2,\dots,k_{m-1},k_m=j} |a_{k_1k_2}|\cdots |a_{k_{m-1}k_m}|$$

So $(|A|^m)_{ij} > 0$ if and only if there exist $k_1 = i, k_2, \ldots, k_{m-1}, k_m = j$ such that $|a_{k_1k_2}|, \ldots, |a_{k_{m-1}k_m}| \neq 0$, i.e. if and only if there exists a path a length *m* from *i* to *j* in the graph $\Gamma(A)$.

To complete the proof, simply notice that $\Gamma(A) = \Gamma(M(A))$.

Proposition

For $A \in M_n(\mathbb{C})$ the three following statements are equivalent:

- $(I_n + |A|)^{n-1} > 0$
- $(I_n + M(A))^{n-1} > 0$
- The graph $\Gamma(A)$ is connected.

Proposition

For $A \in M_n(\mathbb{C})$ the three following statements are equivalent:

- $(I_n + |A|)^{n-1} > 0$
- $(I_n + M(A))^{n-1} > 0$
- The graph $\Gamma(A)$ is connected.

Proof.

$$(I_n + |A|)^{n-1} = \sum_{m=0}^{n-1} C_{n-1}^m |A|^m$$

Proposition

For $A \in M_n(\mathbb{C})$ the three following statements are equivalent:

- $(I_n + |A|)^{n-1} > 0$
- $(I_n + M(A))^{n-1} > 0$
- The graph $\Gamma(A)$ is connected.

Proof.

$$(I_n + |A|)^{n-1} = \sum_{m=0}^{n-1} C_{n-1}^m |A|^m$$

So the diagonal entries of $(I_n + |A|)^{n-1}$ are positive and the off-diagonal are positive if and only if for all $1 \le i \ne j \le n$, there exists $m \in \{1, \ldots, n-1\}$ such that $(|A|^m)_{ij} > 0$.

Proof.

Using the above lemma, we have $(I_n + |A|)^{n-1} > 0$ if and only if any two distinct nodes of $\Gamma(A)$ are linked by a path of length at most equal to n-1.

Proof.

Using the above lemma, we have $(I_n + |A|)^{n-1} > 0$ if and only if any two distinct nodes of $\Gamma(A)$ are linked by a path of length at most equal to n-1.

As the graph has *n* nodes, $(I_n + |A|)^{n-1} > 0$ is equivalent to $\Gamma(A)$ connected.

Proof.

Using the above lemma, we have $(I_n + |A|)^{n-1} > 0$ if and only if any two distinct nodes of $\Gamma(A)$ are linked by a path of length at most equal to n-1.

As the graph has *n* nodes, $(I_n + |A|)^{n-1} > 0$ is equivalent to $\Gamma(A)$ connected.

To complete the proof, simply notice that $\Gamma(A) = \Gamma(M(A))$.

Proof.

Using the above lemma, we have $(I_n + |A|)^{n-1} > 0$ if and only if any two distinct nodes of $\Gamma(A)$ are linked by a path of length at most equal to n-1.

As the graph has *n* nodes, $(I_n + |A|)^{n-1} > 0$ is equivalent to $\Gamma(A)$ connected.

To complete the proof, simply notice that $\Gamma(A) = \Gamma(M(A))$.

The matrices verifying any of the three above assumptions are called **irreducible**.

Proof.

Using the above lemma, we have $(I_n + |A|)^{n-1} > 0$ if and only if any two distinct nodes of $\Gamma(A)$ are linked by a path of length at most equal to n-1.

As the graph has *n* nodes, $(I_n + |A|)^{n-1} > 0$ is equivalent to $\Gamma(A)$ connected.

To complete the proof, simply notice that $\Gamma(A) = \Gamma(M(A))$.

The matrices verifying any of the three above assumptions are called **irreducible**.

Remark: This name comes from another characterization with the impossibility to permute lines/columns to obtain a block-triangular matrix (but we shall not use that in what follows).

A fundamental theorem for nonnegative and irreducible matrices is Perron-Frobenius theorem stating that Perron's theorem generalizes to these matrices: A fundamental theorem for nonnegative and irreducible matrices is Perron-Frobenius theorem stating that Perron's theorem generalizes to these matrices:

Theorem (Perron-Frobenius theorem)

Let $A \in M_n(\mathbb{R})$ be a nonnegative and irreducible matrix. We have the following:

- *ρ*(*A*) > 0
- $\rho(A)$ is an eigenvalue of A
- the associated eigenspace is of dimension 1 and spanned by a positive vector.
- the algebraic multiplicity of $\rho(A)$ is 1.

Proof.

$$\rho(A) = 0 \implies A \text{ nilpotent } \implies \exists m, A^m = |A|^m = 0.$$

Proof.

 $\rho(A) = 0 \implies A \text{ nilpotent } \implies \exists m, A^m = |A|^m = 0.$

However, because $\Gamma(A)$ is connected, there exist paths of any length in the graph, so $\rho(A) > 0$.

Proof.

$$\rho(A) = 0 \implies A \text{ nilpotent } \implies \exists m, A^m = |A|^m = 0.$$

However, because $\Gamma(A)$ is connected, there exist paths of any length in the graph, so $\rho(A) > 0$.

The second point of the theorem does not require irreducibility (see above).

Proof.

 $\rho(A) = 0 \implies A \text{ nilpotent } \implies \exists m, A^m = |A|^m = 0.$ However, because $\Gamma(A)$ is connected, there exist paths of any length in the graph, so $\rho(A) > 0.$

The second point of the theorem does not require irreducibility (see above). Let $x \ge 0$ be such that $Ax = \rho(A)x$. Then

$$(I + |A|)^{n-1}x = (I + A)^{n-1}x = (1 + \rho(A))^{n-1}x$$

But

$$\rho((I + |A|)^{n-1}) = \rho(I + |A|)^{n-1} = \rho(I + A)^{n-1} \le (1 + \rho(A))^{n-1}.$$

Proof.

 $\rho(A) = 0 \implies A \text{ nilpotent } \implies \exists m, A^m = |A|^m = 0.$ However, because $\Gamma(A)$ is connected, there exist paths of any length in the graph, so $\rho(A) > 0.$

The second point of the theorem does not require irreducibility (see above). Let $x \ge 0$ be such that $Ax = \rho(A)x$. Then

$$(I + |A|)^{n-1}x = (I + A)^{n-1}x = (1 + \rho(A))^{n-1}x$$

But

$$\rho((I + |A|)^{n-1}) = \rho(I + |A|)^{n-1} = \rho(I + A)^{n-1} \le (1 + \rho(A))^{n-1}.$$

So x is in fact an eigenvalue of $(I + |A|)^{n-1}$ corresponding to its spectral radius.

Proof.

By Perron's theorem, x > 0 and the eigenspace of A corresponding to $\rho(A)$ is of dimension 1.

Proof.

By Perron's theorem, x > 0 and the eigenspace of A corresponding to $\rho(A)$ is of dimension 1.

Because A irreducible implies A' irreducible, we can apply the above results to A' and conclude for the fourth point as in the proof of Perron's theorem. $\hfill \Box$

Nonnegative and irreducible matrices: Perron-Frobenius theorem

Proof.

By Perron's theorem, x > 0 and the eigenspace of A corresponding to $\rho(A)$ is of dimension 1.

Because A irreducible implies A' irreducible, we can apply the above results to A' and conclude for the fourth point as in the proof of Perron's theorem. $\hfill \Box$

Remark: With positive matrices, $\rho(A)$ is the unique eigenvalue with modulus equal to $\rho(A)$. This is not anymore true for nonnegative matrices.

Nonnegative and irreducible matrices: Perron-Frobenius theorem

Proof.

By Perron's theorem, x > 0 and the eigenspace of A corresponding to $\rho(A)$ is of dimension 1.

Because A irreducible implies A' irreducible, we can apply the above results to A' and conclude for the fourth point as in the proof of Perron's theorem. $\hfill \Box$

Remark: With positive matrices, $\rho(A)$ is the unique eigenvalue with modulus equal to $\rho(A)$. This is not anymore true for nonnegative matrices. However we can prove that, if there are several such eigenvalues in the nonnegative and irreducible case, they form a polygon inside the circle of radius $\rho(A)$ in the complex plane.

Entropic costs: spectral characterization of the ergodic constant

Towards asymptotic results

Let us recall that the value function and the optimal controls depend on

$$w^T: t \in [0, T] \mapsto w^T(t) = e^{B(T-t)}\mathfrak{g}$$

where

$$\mathfrak{g} = (e^{g(1)}, \ldots, e^{g(N)})'$$

and

$$\mathcal{B}_{ij} = \left\{ egin{array}{ll} e^{-1-b_{ij}}, & ext{if } j \in \mathcal{V}(i), \ h(i), & ext{if } j = i, \ 0, & ext{otherwise.} \end{array}
ight.$$

Towards asymptotic results

Let us recall that the value function and the optimal controls depend on

$$w^T: t \in [0, T] \mapsto w^T(t) = e^{B(T-t)}\mathfrak{g}$$

where

$$\mathfrak{g} = (e^{g(1)}, \dots, e^{g(N)})'$$

and

$$\mathcal{B}_{ij} = \left\{ egin{array}{ll} e^{-1-b_{ij}}, & ext{if } j \in \mathcal{V}(i), \ h(i), & ext{if } j = i, \ 0, & ext{otherwise}. \end{array}
ight.$$

We now study the spectrum and deduce the asymptotic behavior of the value function and the optimal controls.

Theorem

 $Sp_{\mathbb{R}}(B)$ is a nonempty set and $\gamma = \max Sp_{\mathbb{R}}(B)$ is an algebraically simple eigenvalue whose associated eigenspace is spanned by a positive vector f. Moreover $\forall \lambda \in Sp(B) \setminus \{\gamma\}, Re(\lambda) < \gamma$.

 γ is the ergodic constant associated with our control problem and

$$\exists \alpha \in \mathbb{R}, \forall i \in \mathcal{I}, \forall t \in \mathbb{R}, \quad \lim_{T \to +\infty} u_i^T(t) - \gamma(T-t) = \alpha + \log(f_i).$$

Moreover, the asymptotic behavior of the optimal controls is given by

$$\forall i \in \mathcal{I}, \forall j \in \mathcal{V}(i), \forall t \in \mathbb{R}, \quad \lim_{T \to +\infty} \lambda_t^*(i, j) = e^{-1 - b_{ij}} \frac{f_j}{f_i}$$

Let us consider $\sigma = -\min_{i \in \mathcal{I}} h(i)$ and denote by $B(\sigma)$ the nonnegative matrix $B + \sigma I_N$.

Let us consider $\sigma = -\min_{i \in \mathcal{I}} h(i)$ and denote by $B(\sigma)$ the nonnegative matrix $B + \sigma I_N$.

 $\Gamma(B(\sigma))$ is the connected graph of our problem to which self-loops may have been added: it is connected and therefore $B(\sigma)$ is irreducible.

Let us consider $\sigma = -\min_{i \in \mathcal{I}} h(i)$ and denote by $B(\sigma)$ the nonnegative matrix $B + \sigma I_N$.

 $\Gamma(B(\sigma))$ is the connected graph of our problem to which self-loops may have been added: it is connected and therefore $B(\sigma)$ is irreducible.

By Perron-Frobenius theorem, $\rho(B(\sigma))$ is an algebraically simple eigenvalue of $B(\sigma)$ and the associated eigenspace is spanned by a positive vector f.

Let us consider $\sigma = -\min_{i \in \mathcal{I}} h(i)$ and denote by $B(\sigma)$ the nonnegative matrix $B + \sigma I_N$.

 $\Gamma(B(\sigma))$ is the connected graph of our problem to which self-loops may have been added: it is connected and therefore $B(\sigma)$ is irreducible.

By Perron-Frobenius theorem, $\rho(B(\sigma))$ is an algebraically simple eigenvalue of $B(\sigma)$ and the associated eigenspace is spanned by a positive vector f.

Shifting the spectrum by $-\sigma$ we see that $\operatorname{Sp}_{\mathbb{R}}(B)$ is a nonempty set and its maximum γ , equal to $\rho(B(\sigma)) - \sigma$, is an algebraically simple eigenvalue of B whose associated eigenspace is spanned by f.

Let us consider $\sigma = -\min_{i \in \mathcal{I}} h(i)$ and denote by $B(\sigma)$ the nonnegative matrix $B + \sigma I_N$.

 $\Gamma(B(\sigma))$ is the connected graph of our problem to which self-loops may have been added: it is connected and therefore $B(\sigma)$ is irreducible.

By Perron-Frobenius theorem, $\rho(B(\sigma))$ is an algebraically simple eigenvalue of $B(\sigma)$ and the associated eigenspace is spanned by a positive vector f.

Shifting the spectrum by $-\sigma$ we see that $\operatorname{Sp}_{\mathbb{R}}(B)$ is a nonempty set and its maximum γ , equal to $\rho(B(\sigma)) - \sigma$, is an algebraically simple eigenvalue of B whose associated eigenspace is spanned by f.

Moreover $\forall \lambda \in Sp(B) \setminus \{\gamma\}, Re(\lambda) < \gamma$.

Now, $\rho(B(\sigma))$ is also an algebraically simple eigenvalue of $B(\sigma)'$ and the associated eigenspace is spanned by a positive vector ϕ .

Now, $\rho(B(\sigma))$ is also an algebraically simple eigenvalue of $B(\sigma)'$ and the associated eigenspace is spanned by a positive vector ϕ .

Using a Jordan decomposition of $B(\sigma)$, we see that \mathfrak{g} can be written as $\beta f + \psi$ where $\beta \in \mathbb{R}$ and $\psi \in \operatorname{Im}(B(\sigma) - \rho(B(\sigma))I_N) = \operatorname{Ker}(B(\sigma)' - \rho(B(\sigma))I_N)^{\perp} = \operatorname{span}(\phi)^{\perp}$.

Now, $\rho(B(\sigma))$ is also an algebraically simple eigenvalue of $B(\sigma)'$ and the associated eigenspace is spanned by a positive vector ϕ .

Using a Jordan decomposition of $B(\sigma)$, we see that \mathfrak{g} can be written as $\beta f + \psi$ where $\beta \in \mathbb{R}$ and $\psi \in \operatorname{Im}(B(\sigma) - \rho(B(\sigma))I_N) = \operatorname{Ker}(B(\sigma)' - \rho(B(\sigma))I_N)^{\perp} = \operatorname{span}(\phi)^{\perp}$. As $\psi = \mathfrak{g} - \beta f \perp \phi$ and all coefficients of \mathfrak{g} , f, and ϕ are positive, we must have $\beta > 0$.

Spectrum of *B* **and asymptotic results**

Proof.

Now,

$$e^{-\gamma(T-t)}w^{T}(t) = e^{(B-\gamma I_{N})(T-t)}\mathfrak{g}$$

= $e^{(B-\gamma I_{N})(T-t)}\beta f + e^{(B-\gamma I_{N})(T-t)}\psi$
= $\beta f + e^{(B-\gamma I_{N})(T-t)}\psi \rightarrow_{T\to+\infty}\beta f.$

Spectrum of *B* and asymptotic results

Proof.

Now,

$$e^{-\gamma(T-t)}w^{T}(t) = e^{(B-\gamma I_{N})(T-t)}\mathfrak{g}$$

= $e^{(B-\gamma I_{N})(T-t)}\beta f + e^{(B-\gamma I_{N})(T-t)}\psi$
= $\beta f + e^{(B-\gamma I_{N})(T-t)}\psi \rightarrow_{T\to+\infty}\beta f.$

By taking logarithms, we obtain that

$$\forall i \in \mathcal{I}, \quad \lim_{T \to +\infty} u_i^T(t) - \gamma(T-t) = \log(\beta) + \log(f_i).$$

Spectrum of *B* and asymptotic results

Proof.

Now,

$$e^{-\gamma(T-t)}w^{T}(t) = e^{(B-\gamma I_{N})(T-t)}\mathfrak{g}$$

= $e^{(B-\gamma I_{N})(T-t)}\beta f + e^{(B-\gamma I_{N})(T-t)}\psi$
= $\beta f + e^{(B-\gamma I_{N})(T-t)}\psi \rightarrow_{T\to+\infty}\beta f.$

By taking logarithms, we obtain that

$$\forall i \in \mathcal{I}, \quad \lim_{T \to +\infty} u_i^T(t) - \gamma(T-t) = \log(\beta) + \log(f_i).$$

For optimal controls, we obtain $\forall i \in \mathcal{I}, \forall j \in \mathcal{V}(i), \forall t \in [0, T]$,

$$\begin{array}{lcl} \lambda_t^*(i,j) & = & e^{-1-b_{ij}} \frac{w_j^T(t)}{w_i^T(t)} \\ & = & e^{-1-b_{ij}} \frac{e^{-\gamma(T-t)} w_j^T(t)}{e^{-\gamma(T-t)} w_i^T(t)} \to_{T \to +\infty} e^{-1-b_{ij}} \frac{f_j}{f_i} \end{array}$$

What we have seen

• We have provided, under simple assumptions, a way to characterize optimal controls (with ODEs).

- We have provided, under simple assumptions, a way to characterize optimal controls (with ODEs).
- We have generalized the results to the case of infinite horizon problems when r > 0 (stationary problems).

- We have provided, under simple assumptions, a way to characterize optimal controls (with ODEs).
- We have generalized the results to the case of infinite horizon problems when r > 0 (stationary problems).
- We have obtained a (difficult) result on the asymptotic behavior far from T when r = 0.

- We have provided, under simple assumptions, a way to characterize optimal controls (with ODEs).
- We have generalized the results to the case of infinite horizon problems when r > 0 (stationary problems).
- We have obtained a (difficult) result on the asymptotic behavior far from T when r = 0.
- We have shown in the case of entropic costs that value functions and optimal controls could be found in closed-form

- We have provided, under simple assumptions, a way to characterize optimal controls (with ODEs).
- We have generalized the results to the case of infinite horizon problems when r > 0 (stationary problems).
- We have obtained a (difficult) result on the asymptotic behavior far from *T* when *r* = 0.
- We have shown in the case of entropic costs that value functions and optimal controls could be found in closed-form
- We have shown in the case of entropic costs that the ergodic constant is the largest real eigenvalue of a simple matrix and that optimal controls are characterized by the coordinates of an associate eigenvector.

What we have seen

- We have provided, under simple assumptions, a way to characterize optimal controls (with ODEs).
- We have generalized the results to the case of infinite horizon problems when r > 0 (stationary problems).
- We have obtained a (difficult) result on the asymptotic behavior far from T when r = 0.
- We have shown in the case of entropic costs that value functions and optimal controls could be found in closed-form
- We have shown in the case of entropic costs that the ergodic constant is the largest real eigenvalue of a simple matrix and that optimal controls are characterized by the coordinates of an associate eigenvector.

We now apply our results to market making and to the Avellaneda-Stoikov equation.

An application to market making

A problem coming from the financial industry

• Not a pricing issue.

- Not a pricing issue.
- Not a hedging issue.

- Not a pricing issue.
- Not a hedging issue.
- Not a problem of portfolio choice.

- Not a pricing issue.
- Not a hedging issue.
- Not a problem of portfolio choice.
- Optimization problem relevant on many markets: market making.

Nature of the problem

A problem coming from the financial industry

- Not a pricing issue.
- Not a hedging issue.
- Not a problem of portfolio choice.
- Optimization problem relevant on many markets: market making.

What is a market maker?

Nature of the problem

A problem coming from the financial industry

- Not a pricing issue.
- Not a hedging issue.
- Not a problem of portfolio choice.
- Optimization problem relevant on many markets: market making.

What is a market maker?

• Liquidity provider: provide bid and ask/offer prices to other market participants

Nature of the problem

A problem coming from the financial industry

- Not a pricing issue.
- Not a hedging issue.
- Not a problem of portfolio choice.
- Optimization problem relevant on many markets: market making.

What is a market maker?

- Liquidity provider: provide bid and ask/offer prices to other market participants
- Today, replaced by algorithms.

• Reference price process (mid-price) $(S_t)_t$:

 $dS_t = \sigma dW_t.$

• Reference price process (mid-price) $(S_t)_t$:

 $dS_t = \sigma dW_t$.

• Bid and ask prices of the MM denoted respectively

$$S^b_t = S_t - \delta^b_t$$
 and $S^a_t = S_t + \delta^a_t.$

• Reference price process (mid-price) $(S_t)_t$:

 $dS_t = \sigma dW_t$.

• Bid and ask prices of the MM denoted respectively

$$S_t^b = S_t - \delta_t^b$$
 and $S_t^a = S_t + \delta_t^a$.

Point processes N^b and N^a for the transactions (size Δ). Inventory (q_t)_t:

$$dq_t = \Delta dN_t^b - \Delta dN_t^a.$$

Setup of models à la Avellaneda-Stoikov

• The intensities of N^b and N^a depend on the distance to the reference price:

$$\begin{split} \lambda_t^b &= \Lambda^b(\delta_t^b) \mathbf{1}_{q_{t-} < Q} \text{ and } \lambda_t^a = \Lambda^a(\delta_t^a) \mathbf{1}_{q_{t-} > -Q}. \\ \Lambda^b, \, \Lambda^a \text{ decreasing.} \end{split}$$

• The intensities of N^b and N^a depend on the distance to the reference price:

$$\begin{split} \lambda_t^b &= \Lambda^b(\delta_t^b) \mathbf{1}_{q_{t-} < Q} \text{ and } \lambda_t^a = \Lambda^a(\delta_t^a) \mathbf{1}_{q_{t-} > -Q}.\\ \Lambda^b, \, \Lambda^a \text{ decreasing.} \end{split}$$

• Cash process $(X_t)_t$:

$$dX_t = \Delta S_t^a dN_t^a - \Delta S_t^b dN_t^b = -S_t dq_t + \delta_t^a \Delta dN_t^a + \delta_t^b \Delta dN_t^b.$$

• The intensities of N^b and N^a depend on the distance to the reference price:

$$\begin{split} \lambda_t^b &= \Lambda^b(\delta_t^b) \mathbf{1}_{q_{t-} < Q} \text{ and } \lambda_t^a = \Lambda^a(\delta_t^a) \mathbf{1}_{q_{t-} > -Q}.\\ \Lambda^b, \, \Lambda^a \text{ decreasing.} \end{split}$$

• Cash process $(X_t)_t$:

$$dX_t = \Delta S_t^a dN_t^a - \Delta S_t^b dN_t^b = -S_t dq_t + \delta_t^a \Delta dN_t^a + \delta_t^b \Delta dN_t^b.$$

Three state variables: X (cash), q (inventory), and S (price).

Naïve: Risk-neutral

$$\sup_{\delta_t^a)_t, (\delta_t^b)_t \in \mathcal{A}} \mathbb{E}\left[X_T + q_T S_T\right].$$

Naïve: Risk-neutral

$$\sup_{\delta_t^a)_t, (\delta_t^b)_t \in \mathcal{A}} \mathbb{E} \left[X_T + q_T S_T \right].$$

The original Avellaneda-Stoikov's model considers a CARA utility function:

CARA objective function (Model A)

$$\sup_{(\delta_t^a)_t, (\delta_t^b)_t \in \mathcal{A}} \mathbb{E}\left[-\exp\left(-\gamma(X_T + q_T S_T)\right)\right],$$

where γ is the absolute risk aversion parameter, and ${\cal A}$ the set of predictable processes bounded from below.

Several objective functions

Models à la Cartea, Jaimungal *et al.* with a running penalty for the inventory:

Risk-neutral with running penalty (Model B) $\sup_{(\delta_t^a)_t, (\delta_t^b)_t \in \mathcal{A}} \mathbb{E}\left[X_T + q_T S_T - \frac{\gamma}{2}\sigma^2 \int_0^T q_t^2 dt\right],$

where γ is a kind of absolute risk aversion parameter.

HJB equation (Model A)

In what follows, u is a candidate for the value function.

Hamilton-Jacobi-Bellman

$$(\text{HJB}) \qquad 0 = \partial_t u(t, x, q, S) + \frac{1}{2} \sigma^2 \partial_{SS}^2 u(t, x, q, S) + 1_{q < Q} \sup_{\delta^b} \Lambda^b(\delta^b) \left[u(t, x - \Delta S + \Delta \delta^b, q + \Delta, S) - u(t, x, q, S) \right] + 1_{q > -Q} \sup_{\delta^a} \Lambda^a(\delta^a) \left[u(t, x + \Delta S + \Delta \delta^a, q - \Delta, S) - u(t, x, q, S) \right]$$

with final condition:

$$u(T, x, q, S) = -\exp\left(-\gamma(x+qS)\right)$$

Change of variables (Model A)

Ansatz

$$u(t, x, q, S) = -\exp(-\gamma(x + qS + \theta(t, q)))$$

Ansatz

$$u(t, x, q, S) = -\exp(-\gamma(x + qS + \theta(t, q)))$$

New equation (Model A)

$$0 = \partial_t \theta(t, q) - \frac{1}{2} \gamma \sigma^2 q^2$$

$$+ \mathbb{1}_{q < Q} \sup_{\delta^{b}} \frac{\Lambda^{b}(\delta^{b})}{\gamma} \left(1 - \exp\left(-\gamma \left(\Delta \delta^{b} + \theta(t, q + \Delta) - \theta(t, q)\right)\right) \right)$$

$$+1_{q>-Q} \sup_{\delta^{a}} \frac{\Lambda^{a}(\delta^{a})}{\gamma} \left(1 - \exp\left(-\gamma \left(\Delta \delta^{a} + \theta(t, q - \Delta) - \theta(t, q)\right)\right)\right)$$

with final condition $\theta(T, q) = 0$.

Equation for θ (Model A)

A new transform

$$H_{\xi}^{b}(p) = \sup_{\delta} \frac{\Lambda^{b}(\delta)}{\xi} \left(1 - \exp\left(-\xi\Delta\left(\delta - p\right)\right)\right)$$
$$H_{\xi}^{a}(p) = \sup_{\delta} \frac{\Lambda^{a}(\delta)}{\xi} \left(1 - \exp\left(-\xi\Delta\left(\delta - p\right)\right)\right)$$

Equation for θ (Model A)

A new transform

$$H_{\xi}^{b}(p) = \sup_{\delta} \frac{\Lambda^{b}(\delta)}{\xi} \left(1 - \exp\left(-\xi\Delta\left(\delta - p\right)\right)\right)$$
$$H_{\xi}^{a}(p) = \sup_{\delta} \frac{\Lambda^{a}(\delta)}{\xi} \left(1 - \exp\left(-\xi\Delta\left(\delta - p\right)\right)\right)$$

New equation (Model A)

$$0 = \partial_t \theta(t, q) - \frac{1}{2} \gamma \sigma^2 q^2 + 1_{q < Q} H^b_{\gamma} \left(\frac{\theta(t, q) - \theta(t, q + \Delta)}{\Delta} \right) \\ + 1_{q > -Q} H^a_{\gamma} \left(\frac{\theta(t, q) - \theta(t, q - \Delta)}{\Delta} \right)$$

with final condition $\theta(T, q) = 0$.

HJB equation (Model B)

Hamilton-Jacobi-Bellman

(HJB)
$$0 = \partial_t u(t, x, q, S) - \frac{1}{2}\gamma\sigma^2 q^2 + \frac{1}{2}\sigma^2\partial_{SS}^2 u(t, x, q, S)$$
$$+ 1_{q < Q} \sup_{\delta^b} \Lambda^b(\delta^b) \left[u(t, x - \Delta S + \Delta \delta^b, q + \Delta, S) - u(t, x, q, S) \right]$$
$$+ 1_{q > -Q} \sup_{\delta^a} \Lambda^a(\delta^a) \left[u(t, x + \Delta S + \Delta \delta^a, q - \Delta, S) - u(t, x, q, S) \right]$$

with final condition:

$$u(T, x, q, S) = x + qS$$

Ansatz

$$u(T, x, q, S) = x + qS + \theta(t, q)$$

Ansatz

$$u(T, x, q, S) = x + qS + \theta(t, q)$$

New equation (Model B)

$$0 = \partial_t \theta(t, q) - \frac{1}{2} \gamma \sigma^2 q^2$$

+1_{q < Q} sup_{\delta^b} \Lambda^b(\delta^b) [\Delta \delta^b + \theta(t, q + \Delta) - \theta(t, q)]
+1_{q > -Q} sup_{\delta^a} \Lambda^a(\delta^a) [\Delta \delta^a + \theta(t, q - \Delta) - \theta(t, q)]

with final condition $\theta(T, q) = 0$.

Equation for θ (Model B)

Equation for θ (Model B)

A new transform

$$H_0^b(p) = \Delta \sup_{\delta} \Lambda^b(\delta)(\delta - p)$$
$$H_0^a(p) = \Delta \sup_{\delta} \Lambda^a(\delta)(\delta - p)$$

Equation for θ (Model B)

A new transform

$$H_0^b(p) = \Delta \sup_{\delta} \Lambda^b(\delta)(\delta - p)$$
$$H_0^a(p) = \Delta \sup_{\delta} \Lambda^a(\delta)(\delta - p)$$

New equation (Model B)

$$\begin{split} 0 &= \partial_t \theta(t,q) - \frac{1}{2} \gamma \sigma^2 q^2 + 1_{q < Q} H_0^b \left(\frac{\theta(t,q) - \theta(t,q+\Delta)}{\Delta} \right) \\ &+ 1_{q > -Q} H_0^a \left(\frac{\theta(t,q) - \theta(t,q-\Delta)}{\Delta} \right) \end{split}$$

with final condition $\theta(T, q) = 0$.

Uniting two objective functions

Uniting two objective functions

• Same family of equations for θ in both models.

Uniting two objective functions

- Same family of equations for θ in both models.
- A system of $2Q/\Delta + 1$ non-linear ODEs.

Uniting two objective functions

- Same family of equations for θ in both models.
- A system of $2Q/\Delta + 1$ non-linear ODEs.
- In both cases: problem in dimension 2 instead of 4.

Uniting two objective functions

- Same family of equations for $\boldsymbol{\theta}$ in both models.
- A system of $2Q/\Delta + 1$ non-linear ODEs.
- In both cases: problem in dimension 2 instead of 4.

$$0 = \partial_t \theta(t, q) - \frac{1}{2} \gamma \sigma^2 q^2 + 1_{q < Q} H^b_{\xi} \left(\frac{\theta(t, q) - \theta(t, q + \Delta)}{\Delta} \right) + 1_{q > -Q} H^a_{\xi} \left(\frac{\theta(t, q) - \theta(t, q - \Delta)}{\Delta} \right)$$

with final condition $\theta(T, q) = 0$.

A unique family of equations

Uniting two objective functions

- Same family of equations for $\boldsymbol{\theta}$ in both models.
- A system of $2Q/\Delta + 1$ non-linear ODEs.
- In both cases: problem in dimension 2 instead of 4.

$$0 = \partial_t \theta(t, q) - \frac{1}{2} \gamma \sigma^2 q^2 + 1_{q < Q} H^b_{\xi} \left(\frac{\theta(t, q) - \theta(t, q + \Delta)}{\Delta} \right) + 1_{q > -Q} H^a_{\xi} \left(\frac{\theta(t, q) - \theta(t, q - \Delta)}{\Delta} \right)$$

with final condition $\theta(T, q) = 0$.

Same equations as those studied earlier (written in a slightly different manner)

The intensity functions Λ^b and Λ^a

Assumptions on Λ^b and Λ^a .

- 1. $\Lambda^{b/a}$ is C^2 .
- $2. \ \Lambda^{b/a'} < 0.$

3.
$$\lim_{\delta \to +\infty} \Lambda^{b/a}(\delta) = 0.$$

4. The intensity functions $\Lambda^{b/a}$ satisfy:

$$\sup_{\delta} \frac{\Lambda^{b/a}(\delta)\Lambda^{b/a''}(\delta)}{\left(\Lambda^{b/a'}(\delta)\right)^2} < 2.$$

The intensity functions Λ^b and Λ^a

Assumptions on Λ^b and Λ^a .

- 1. $\Lambda^{b/a}$ is C^2 .
- $2. \ \Lambda^{b/a'} < 0.$

3.
$$\lim_{\delta \to +\infty} \Lambda^{b/a}(\delta) = 0.$$

4. The intensity functions $\Lambda^{b/a}$ satisfy:

$$\sup_{\delta} \frac{\Lambda^{b/a}(\delta)\Lambda^{b/a''}(\delta)}{\left(\Lambda^{b/a'}(\delta)\right)^2} < 2.$$

Exponential intensity

In Avellaneda and Stoikov ($\Delta = 1$):

$$\Lambda^b(\delta) = \Lambda^a(\delta) = Ae^{-k\delta}.$$

The functions H^b_{ξ} and H^a_{ξ}

The functions H^b_{ε} and H^a_{ε}

Proposition

- $\forall \xi \ge 0$, $H_{\xi}^{b/a}$ is a decreasing function of class C^2 .
- In the definition of $H_{\xi}^{b/a}(p)$, the supremum is attained at a unique $\tilde{\delta}_{\varepsilon}^{b/a*}(p)$ characterized by

$$\tilde{\delta}_{\xi}^{b/a*}(p) = \Lambda^{b/a^{-1}}\left(\xi H_{\xi}^{b/a}(p) - \frac{H_{\xi}^{b/a'}(p)}{\Delta}\right)$$

• The function $p \mapsto \tilde{\delta}_{\xi}^{b/a*}(p)$ is increasing.

The functions H^b_{ε} and H^a_{ε}

Proposition

- $\forall \xi \ge 0$, $H_{\xi}^{b/a}$ is a decreasing function of class C^2 .
- In the definition of $H_{\xi}^{b/a}(p)$, the supremum is attained at a unique $\tilde{\delta}_{\varepsilon}^{b/a*}(p)$ characterized by

$$\tilde{\delta}_{\xi}^{b/a*}(p) = \Lambda^{b/a^{-1}}\left(\xi H_{\xi}^{b/a}(p) - \frac{H_{\xi}^{b/a'}(p)}{\Delta}\right)$$

• The function $p \mapsto \tilde{\delta}_{\xi}^{b/a*}(p)$ is increasing.

Remark: $H_{\xi}^{b/a}$ decreasing corresponds to increasing Hamiltonian functions in our optimal control theory on graphs.

Existence and uniqueness

Results for $\boldsymbol{\theta}$

There exists a unique C^1 (in time) solution $t \mapsto (\theta(t,q))_{|q| \leq Q}$ to

$$0 = \partial_t \theta(t, q) - \frac{1}{2} \gamma \sigma^2 q^2 + 1_{q < Q} H^b_{\xi} \left(\frac{\theta(t, q) - \theta(t, q + \Delta)}{\Delta} \right)$$
$$+ 1_{q > -Q} H^a_{\xi} \left(\frac{\theta(t, q) - \theta(t, q - \Delta)}{\Delta} \right)$$

with final condition $\theta(T, q) = 0$.

Solution of the initial problems (verification argument)

By using a verification argument, the functions u are the value functions associated with the problems of Model A and Model B.

Optimal quotes

The optimal quotes in models A ($\xi = \gamma$) and B ($\xi = 0$) are:

$$\begin{split} \delta_t^{b*} &= \tilde{\delta}_{\xi}^{b*} \left(\frac{\theta(t, q_{t-}) - \theta(t, q_{t-} + \Delta)}{\Delta} \right) \\ \delta_t^{a*} &= \tilde{\delta}_{\xi}^{a*} \left(\frac{\theta(t, q_{t-}) - \theta(t, q_{t-} - \Delta)}{\Delta} \right) \end{split}$$

where

$$\tilde{\delta}_{\xi}^{b/a*}(p) = \Lambda^{b/a^{-1}}\left(\xi H_{\xi}^{b/a}(p) - \frac{H_{\xi}^{b/a'}(p)}{\Delta}\right).$$

The case
$$\Lambda^{b}(\delta) = \Lambda^{a}(\delta) = Ae^{-k\delta}$$

The functions $H_{\xi}^{b/a}$ and $\tilde{\delta}_{\xi}^{b/a*}$ If $\Lambda^{b}(\delta) = \Lambda^{a}(\delta) = Ae^{-k\delta}$, then $H_{\xi}^{b/a}(p) = \frac{A\Delta}{k}C_{\xi}\exp(-kp)$, with $C_{\xi} = \begin{cases} \left(1 + \frac{\xi\Delta}{k}\right)^{-\frac{k}{\xi\Delta}-1} & \text{if } \xi > 0\\ e^{-1} & \text{if } \xi = 0. \end{cases}$

and

$$\tilde{\delta}_{\xi}^{b/a*}(p) = \begin{cases} p + \frac{1}{\xi\Delta} \log\left(1 + \frac{\xi\Delta}{k}\right) & \text{if } \xi > 0\\ p + \frac{1}{k} & \text{if } \xi = 0, \end{cases}$$

The functions $H_{\varepsilon}^{b/a}$ and $\tilde{\delta}_{\varepsilon}^{b/a*}$ If $\Lambda^{b}(\delta) = \Lambda^{a}(\delta) = Ae^{-k\delta}$, then $H_{\varepsilon}^{b/a}(p) = \frac{A\Delta}{k}C_{\varepsilon}\exp(-kp)$, with $C_{\xi} = \begin{cases} \left(1 + \frac{\xi \Delta}{k}\right)^{-\frac{\kappa}{\xi \Delta} - 1} & \text{if } \xi > 0\\ e^{-1} & \text{if } \xi = 0. \end{cases}$ and $\tilde{\delta}_{\xi}^{b/a*}(p) = \begin{cases} p + \frac{1}{\xi\Delta} \log\left(1 + \frac{\xi\Delta}{k}\right) & \text{if } \xi > 0\\ p + \frac{1}{\xi} & \text{if } \xi = 0. \end{cases}$

This corresponds exactly to our framework with entropic costs

The case
$$\Lambda^{b}(\delta) = \Lambda^{a}(\delta) = Ae^{-k\delta}$$

The system of ODEs

$$0=\partial_t heta(t,q)-rac{1}{2}\gamma\sigma^2 q^2+$$

$$+\frac{A\Delta}{k}C_{\xi}\left(1_{q-Q}e^{k\frac{\theta(t,q-\Delta)-\theta(t,q)}{\Delta}}\right)$$

with final condition $\theta(T, q) = 0$.

The system of ODEs

$$0=\partial_t heta(t,q)-rac{1}{2}\gamma\sigma^2q^2+$$

$$+\frac{A\Delta}{k}C_{\xi}\left(1_{q-Q}e^{k\frac{\theta(t,q-\Delta)-\theta(t,q)}{\Delta}}\right)$$

with final condition $\theta(T, q) = 0$.

Change of variables:
$$v_q(t) = \exp\left(\frac{k\theta(t,q)}{\Delta}\right)$$

The case
$$\Lambda^{b}(\delta) = \Lambda^{a}(\delta) = Ae^{-k\delta}$$

A linear system of ODEs

$$v'_{q}(t) = \alpha q^{2} v_{q}(t) - \eta_{\xi} \left(1_{q < Q} v_{q+\Delta}(t) + 1_{q > -Q} v_{q-\Delta}(t) \right),$$

with

$$\alpha = \frac{k}{2\Delta} \gamma \sigma^2, \qquad \eta_{\xi} = AC_{\xi}$$

and the terminal condition v(T, q) = 1.

A linear system of ODEs

$$\mathbf{v}_q'(t) = lpha q^2 \mathbf{v}_q(t) - \eta_{\xi} \left(\mathbf{1}_{q < Q} \mathbf{v}_{q+\Delta}(t) + \mathbf{1}_{q > -Q} \mathbf{v}_{q-\Delta}(t)
ight),$$

with

$$\alpha = \frac{k}{2\Delta} \gamma \sigma^2, \qquad \eta_{\xi} = AC_{\xi}$$

and the terminal condition v(T, q) = 1.

This corresponds to

$$B = \begin{pmatrix} -\alpha Q^2 & \eta_{\xi} \\ \eta_{\xi} & -\alpha (Q - \Delta)^2 & \eta_{\xi} \\ & \eta_{\xi} & \ddots & \ddots \\ & & \ddots & \ddots & \eta_{\xi} \\ & & & \eta_{\xi} & -\alpha Q^2 \end{pmatrix}$$

which is symmetric here!

The case
$$\Lambda^{b}(\delta) = \Lambda^{a}(\delta) = Ae^{-k\delta}$$

Optimal quotes

The optimal quotes in models A ($\xi = \gamma$) and B ($\xi = 0$) are:

$$\begin{split} \delta_t^{b*} &= \delta^{b*}(t, q_{t-}) := D_{\xi} + \frac{1}{k} \ln \left(\frac{v_{q_{t-}}(t)}{v_{q_{t-} + \Delta}(t)} \right) \\ \delta_t^{a*} &= \delta^{a*}(t, q_{t-}) := D_{\xi} + \frac{1}{k} \ln \left(\frac{v_{q_{t-}}(t)}{v_{q_{t-} - \Delta}(t)} \right) \\ D_{\xi} &= \begin{cases} \frac{1}{\xi\Delta} \log \left(1 + \frac{\xi\Delta}{k} \right) & \text{if } \xi > 0 \\ \frac{1}{k} & \text{if } \xi = 0, \end{cases} \end{split}$$

The case
$$\Lambda^{b}(\delta) = \Lambda^{a}(\delta) = Ae^{-k\delta}$$

The optimal quote functions far from T only depend on q:

Asymptotics

$$\delta^{b*}_{\infty}(q) = \lim_{T \to \infty} \delta^{b*}(0, q) = D_{\xi} + \frac{1}{k} \ln\left(\frac{f_q^0}{f_{q+\Delta}^0}\right)$$
$$\delta^{a*}_{\infty}(q) = \lim_{T \to \infty} \delta^{a*}(0, q) = D_{\xi} + \frac{1}{k} \ln\left(\frac{f_q^0}{f_{q-\Delta}^0}\right)$$

The optimal quote functions far from T only depend on q:

Asymptotics

$$\delta_{\infty}^{b*}(q) = \lim_{T \to \infty} \delta^{b*}(0, q) = D_{\xi} + \frac{1}{k} \ln \left(\frac{f_q^0}{f_{q+\Delta}^0} \right)$$
$$\delta_{\infty}^{a*}(q) = \lim_{T \to \infty} \delta^{a*}(0, q) = D_{\xi} + \frac{1}{k} \ln \left(\frac{f_q^0}{f_{q-\Delta}^0} \right)$$

Because B is symmetric, $f^0 \in \mathbb{R}^{2Q/\Delta+1}$ is characterized by a Rayleigh ratio:

$$\underset{\|f\|_{2}=1}{\operatorname{argmin}} \sum_{|q| \leq Q} \alpha q^{2} f_{q}^{2} + \eta_{\xi} \left(\sum_{q=-Q}^{Q-\Delta} (f_{q+\Delta} - f_{q})^{2} + (f_{Q})^{2} + (f_{-Q})^{2} \right).$$

The case
$$\Lambda^{b}(\delta) = \Lambda^{a}(\delta) = Ae^{-k\delta}$$

Continuous counterpart

 $ilde{f}^0 \in L^2(\mathbb{R})$ characterized by:

$$\operatorname*{argmin}_{\|\tilde{f}\|_{L^2(\mathbb{R})}=1} \int_{-\infty}^{\infty} \left(\alpha x^2 \tilde{f}(x)^2 + \eta_{\xi} \Delta^2 \tilde{f}'(x)^2 \right) dx.$$

The case
$$\Lambda^{b}(\delta) = \Lambda^{a}(\delta) = Ae^{-k\delta}$$

Continuous counterpart

 $ilde{f}^0 \in L^2(\mathbb{R})$ characterized by:

$$\operatorname*{argmin}_{\|\tilde{f}\|_{L^2(\mathbb{R})}=1}\int_{-\infty}^{\infty} \left(\alpha x^2 \tilde{f}(x)^2 + \eta_{\xi} \Delta^2 \tilde{f}'(x)^2\right) dx.$$

$$ilde{f}^0(x) \propto \exp\left(-rac{1}{2\Delta}\sqrt{rac{lpha}{\eta_{\xi}}}x^2
ight)$$

The case
$$\Lambda^{b}(\delta) = \Lambda^{a}(\delta) = Ae^{-k\delta}$$

Continuous counterpart

 $ilde{f}^0 \in L^2(\mathbb{R})$ characterized by:

$$\operatorname*{argmin}_{\|\tilde{f}\|_{L^2(\mathbb{R})}=1}\int_{-\infty}^{\infty} \left(\alpha x^2 \tilde{f}(x)^2 + \eta_{\xi} \Delta^2 \tilde{f}'(x)^2\right) dx.$$

$$ilde{f}^0(x) \propto \exp\left(-rac{1}{2\Delta}\sqrt{rac{lpha}{\eta_{\xi}}}x^2
ight)$$

Hence, we get an approximation of the form:

$$f_q^0 \propto \exp\left(-rac{1}{2\Delta}\sqrt{rac{lpha}{\eta_{arepsilon}}}q^2
ight)$$

Using the continuous counterpart, we get:

Closed-form approximations: optimal quotes (Model A: $\xi = \gamma$)

$$\begin{split} \delta^{b*}_{\infty}(q) &\simeq \frac{1}{\Delta\xi} \ln\left(1 + \frac{\Delta\xi}{k}\right) + \frac{2q + \Delta}{2} \sqrt{\frac{\gamma\sigma^2}{2kA\Delta} \left(1 + \frac{\Delta\xi}{k}\right)^{1 + \frac{k}{\Delta\xi}}} \\ \delta^{a*}_{\infty}(q) &\simeq \frac{1}{\Delta\xi} \ln\left(1 + \frac{\Delta\xi}{k}\right) - \frac{2q - \Delta}{2} \sqrt{\frac{\gamma\sigma^2}{2kA\Delta} \left(1 + \frac{\Delta\xi}{k}\right)^{1 + \frac{k}{\Delta\xi}}} \end{split}$$

Remark: these formulas are used by many practitioners in Europe and Asia on quote-driven markets.

The case
$$\Lambda^{b}(\delta) = \Lambda^{a}(\delta) = Ae^{-k\delta}$$

Using the continuous counterpart, we get:

Closed-form approximations: optimal quotes (Model B: $\xi = 0$)

$$egin{aligned} \delta^{b*}_{\infty}(q) &\simeq & rac{1}{k} + rac{2q+\Delta}{2}\sqrt{rac{\gamma\sigma^2 e}{2kA\Delta}} \ \delta^{a*}_{\infty}(q) &\simeq & rac{1}{k} - rac{2q-\Delta}{2}\sqrt{rac{\gamma\sigma^2 e}{2kA\Delta}} \end{aligned}$$

The case
$$\Lambda^{b}(\delta) = \Lambda^{a}(\delta) = Ae^{-k\delta}$$

A good way to analyze the result is to consider the spread $\psi = \delta^b + \delta^a$ and the skew $\zeta = \delta^b - \delta^a$.

Closed-form approx.: spread and skew (Model A, $\xi = \gamma$)

$$\psi^*_{\infty}(q) \simeq rac{2}{\Delta\xi} \ln\left(1+rac{\Delta\xi}{k}
ight) + \Delta\sqrt{rac{\gamma\sigma^2}{2kA\Delta}} \left(1+rac{\Delta\xi}{k}
ight)^{1+rac{k}{\Delta\xi}}$$

 $\zeta^*_{\infty}(q) \simeq 2q\sqrt{rac{\gamma\sigma^2}{2kA\Delta}} \left(1+rac{\Delta\xi}{k}
ight)^{1+rac{k}{\Delta\xi}}$

The case
$$\Lambda^{b}(\delta) = \Lambda^{a}(\delta) = Ae^{-k\delta}$$

Closed form approx.: spread and skew (Model B, $\xi = 0$) $\psi_{\infty}^{*}(q) \simeq \frac{2}{k} + \Delta \sqrt{\frac{\gamma \sigma^{2} e}{2kA\Delta}}$ $\zeta_{\infty}^{*}(q) \simeq 2q \sqrt{\frac{\gamma \sigma^{2} e}{2kA\Delta}}$

If you want to know more about market making

Questions

Thanks for your attention. Questions.