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The lectures

Optimal control theory

• A theory to tackle dynamic optimization problems.

• Linked to the calculus of variations (18th century) but a major

achievement of the 20th century (Bellman equations, viscosity

solutions, etc.).

• Used in a lot of fields: aerospace, robotics, finance, etc.

• Very hot recently: related to reinforcement learning (see DeepMind).

Different frameworks

• Discrete-time with discrete/continuous-state space: recursive

equations (often untractable).

• Continuous-time with continuous state space: partial differential

equations (sometimes very technical, e.g. viscosity solutions).

• Continuous-time with discrete state space: ordinary differential

equations (less technical, and reveals the main ideas).
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The lectures

In this lecture

• Introduction of the modelling framework and presentation of the

main issues.

• Motivation with a toy example from (re)commerce.

• Derivation of the main results.

In the next lecture

• Derivation of the main results (continued).

• The specific case of entropic costs.

• Discussion of applications to market making issues.
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Introduction to the modelling framework: graphs
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Introduction to the modelling framework: graphs

Vocabulary

• Nodes or vertices: I = {1, . . . ,N}.
• Edges (directed edges) or links: for each i ∈ I,V(i) ⊂ I \ {i} is the

set of nodes j for which a directed edge exists from i to j .

• Transition probabilities in continuous time are described by a

collection of feedback control functions (λt(i , ·))i∈I where

λt(i , ·) : V(i)→ R+.

Main assumptions

• On the graph: it is connected, i.e. there is a path from any point to

any other point.

• On transition probabilities: they are chosen by an agent. He/she

cannot create edges.
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Introduction to the modelling framework: graphs
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1 − (λt (1, 2) + λt (1, 4))dt

λt (1, 2)dt

λt (1, 4)dt

1 − λt (2, 4)dt λt (2, 4)dt

1 − (λt (4, 3) + λt (4, 5))dt

λt (4, 3)dt

λt (4, 5)dt
1 − λt (3, 1)dt

λt (3, 1)dt

1 − λt (5, 1)dt

λt (5, 1)dt

9



Introduction to the optimization problem

An agent moving on the graph

• Time interval: [0,T ]

• If at time t the agent is at node/state i , then, over [t, t + dt]:

• he/she gets a payoff h(i)dt

• he/she pays a cost c
(
i , (λt(i , j))j∈V(i)

)
dt

⇒ L
(
i , (λt (i , j))j∈V(i)

)
= c

(
i , (λt(i , j))j∈V(i)

)
− h(i).

Remark: L can take the value +∞.

• If at time T the agent is at node/state i : final payoff g(i)

• Discount rate r ≥ 0.
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Introduction to the optimization problem

State process

(X t,i,λ
s )s∈[t,T ]: continuous-time Markov chain on the graph starting from

node i at time t, with instantaneous transition probabilities given by λ.

Goal of the agent

Maximizing over the intensities the objective criterion

E

[
−
∫ T

0

e−rtL

(
X 0,i,λ
t ,

(
λt

(
X 0,i,λ
t , j

))
j∈V(X 0,i,λ

t )

)
dt

+ e−rTg
(
X 0,i,λ
T

)]

Remark: To be rigorous, we impose λ such that t 7→ λt(i , j) ∈ L1(0,T ).
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Main mathematical problems

Optimal controls

• Under what conditions do there exist optimal controls / optimal

intensities?

• How do you compute them if they exist?

Asymptotics

• What happens when T →∞ if r > 0? → stationary problem.

• What happens when T →∞ if r = 0? → ergodic problem.
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Motivation / Example: a toy model of

commerce / recommerce
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The toy problem of a platform of (re)commerce

Buying and selling a book

• We consider a book bought and sold by a platform.

• At time t, the platform proposes:

• to buy at price P − δbt (if the inventory is < Q),

• to sell at price P + δst (if the inventory is > 0).

• The probability of trades over [t, t + dt] are:

• Λb(δbt )dt for a buy trade (Λb decreasing),

• Λs(δst )dt for a sell trade (Λs decreasing).

• The cost of holding an inventory qt over [t, t + dt] is c(qt)dt (where

c is increasing).
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The toy problem of a platform of (re)commerce

Variables

Denoting by Nb and Ns the point processes of “buys” and “sells” we

have:

• the inventory (qt)t verifies qt = Nb
t − Ns

t .

• the money on the cash account (Zt)t verifies:

dZt = −(P − δbt )dNb
t + (P + δst )dNs

t = −Pdqt + δbt dN
b
t + δst dN

s
t .

Optimization problem

Maximizing

E
[
ZT + PqT −

∫ T

0
c(qt)dt

]
= E

[∫ T

0
δbt dN

b
t + δst dN

s
t − c(qt)dt

]
= E

[∫ T

0

(
δbt Λb(δbt ) + δst Λs(δst )− c(qt)

)
dt

]
, λ

b/s
t = Λb/s(δ

b/s
t )

= E
[∫ T

0

((
Λb
)−1

(λbt )λbt + (Λs)−1 (λst )λst − c(qt)

)
dt

]
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The toy problem of a platform of (re)commerce

• The graph

0 1 2 . . . Q − 1 Q

• No discount rate.

• No final payoff.

• The function L(·, ·):

• L(0, λ(0, 1)) = −λ(0, 1)
(
Λb
)−1

(λ(0, 1)) + c(0)

• L(Q, λ(Q,Q − 1)) = −λ(Q,Q − 1) (Λs)−1 (λ(Q,Q − 1)) + c(Q)

• ∀q ∈ {1, . . . ,Q − 1},

L(q, λ(q, q + 1), λ(q, q − 1)) =− λ(q, q + 1)
(

Λb
)−1

(λ(q, q + 1))

− λ(q, q − 1) (Λs)−1 (λ(q, q − 1)) + c(q)

18
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A general theory for optimal control on

graphs – Finite-horizon problem

19



Main tool of optimal control: value function

Value function

The value function associates a state i and a time t to the best possible

score starting at time t from state i :

uT ,r
i (t) = sup

(λs (·,·))s∈[t,T ]

E

[
−
∫ T

t

e−r(s−t)L

(
X t,i,λ

s ,
(
λs

(
X t,i,λ

s , j
))

j∈V
(
X

t,i,λ
s

)
)
ds

+ e−r(T−t)g
(
X t,i,λ

T

)]
.

Many methods of optimal control are based on computing the value

function and deducing the optimal controls.

How to compute the value function? → through the system of

ODEs it solves: Hamilton-Jacobi / Bellman equations.
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Heuristic derivation of Hamilton-Jacobi / Bellman equations

• Let us consider a time t ∈ [0,T ) and let us assume that we know

the values of the value function at time t + dt.

• If the agent is in state i at time t and chooses λt(·, ·) for the period

[t, t + dt] then:

• for all j ∈ V(i), the agent will be in state j at time t + dt with

probability λt(i , j)dt,

• the agent will still be in state i at time t + dt with probability

1−
∑

j∈V(i) λt(i , j)dt.

• Therefore

uT ,r
i (t) = sup

λt (·,·)

− L
(
i , (λt (i , j))j∈V(i)

)
dt + e−rdt×

1−
∑

j∈V(i)

λt(i , j)dt

 · uT ,r
i (t + dt) +

∑
j∈V(i)

λt(i , j)dt · uT ,r
j (t + dt)
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Heuristic derivation of Hamilton-Jacobi / Bellman equations

Taylor expansion

e−rdt

1−
∑

j∈V(i)

λt(i , j)dt

 · uT ,r
i (t + dt) +

∑
j∈V(i)

λt(i , j)dt · uT ,r
j (t + dt)


=(1− rdt)

uT ,r
i (t + dt) +

∑
j∈V(i)

λt(i , j)dt(uT ,r
j (t + dt)− uT ,r

i (t + dt))


=(1− rdt)

uT ,r
i (t) +

d

dt
uT ,r
i (t)dt +

∑
j∈V(i)

λt(i , j)dt(uT ,r
j (t)− uT ,r

i (t)) + o(dt)


=uT ,r

i (t) + dt

−ruT ,r
i (t) +

d

dt
uT ,r
i (t) +

∑
j∈V(i)

λt(i , j)(uT ,r
j (t)− uT ,r

i (t))


+ o(dt)

22



Heuristic derivation of Hamilton-Jacobi / Bellman equations

Wrapping up we get:

uT ,ri (t) = sup
λt (·,·)

− L
(
i , (λt (i , j))j∈V(i)

)
dt+

uT ,ri (t) + dt

−ruT ,ri (t) +
d

dt
uT ,ri (t) +

∑
j∈V(i)

λt(i , j)(uT ,rj (t)− uT ,ri (t))

+ o(dt)



So, necessarily:

0 =
d

dt
uT ,ri (t)− ruT ,ri (t)

+ sup
λt (·,·)

 ∑
j∈V(i)

λt(i , j)
(
uT ,rj (t)− uT ,ri (t)

)− L
(
i , (λt(i , j))j∈V(i)

) ,
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Hamilton-Jacobi / Bellman equations

Because

uT ,ri (T ) = g(i), ∀i ∈ I,

we are interested in the system of ODEs:

∀i ∈ I, 0 =
d

dt
V T ,r
i (t)− rV T ,r

i (t)

+ sup
(λij )j∈V(i)∈R

|V(i)|
+

 ∑
j∈V(i)

λij

(
V T ,r
j (t)− V T ,r

i (t)
)− L

(
i , (λij)j∈V(i)

)
with terminal condition V T ,r

i (T ) = g(i), ∀i ∈ I.
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Hamilton-Jacobi / Bellman equations

To simplify notations, we introduce the Hamiltonian functions associated

with the cost functions (L(i , ·))i∈I :

∀i ∈ I,H(i , ·) : p ∈ R|V(i)| 7→ H(i , p)

where

H(i , p) = sup
(λij )j∈V(i)∈R

|V(i)|
+

 ∑
j∈V(i)

λijpj

− L
(
i , (λij)j∈V(i)

) .
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Hamilton-Jacobi / Bellman equations

The ODEs then write:

∀(i , t) ∈ I × [0,T ],

d

dt
V T ,r
i (t)− rV T ,r

i (t) + H

(
i ,
(
V T ,r
j (t)− V T ,r

i (t)
)
j∈V(i)

)
= 0

with terminal condition V T ,r
i (T ) = g(i), ∀i ∈ I.

Our goal now

Prove existence (and uniqueness) on I × [0,T ].

The solution will be the value function (uT ,ri )i∈I and the optimal

controls of an agent in state i at time t given by any maximizer of ∑
j∈V(i)

λij

(
uT ,rj (t)− uT ,ri (t)

)− L
(
i , (λij)j∈V(i)

)
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How to prove existence / uniqueness for ODEs?

Main theorems

• For local (in time) existence and uniqueness: Cauchy-Lipschitz /

Picard-Lindelöf theorem → requires locally Lipschitz properties of H

(with respect to p).

• For global (in time) existence and uniqueness: Global versions of

Cauchy-Lipschitz / Picard-Lindelöf theorem → requires Lipschitz

properties of H (with respect to p) – too much here.

• For local (in time) existence only: Peano existence theorem →
requires continuity of H (with respect to p) – we can do better here.

From local to (half-)global existence

• Monotonicity properties

• Comparison principles

• A priori estimates

• etc.
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Assumptions on the function L

1. Non-degeneracy:

∀i ∈ I,∃ (λij)j∈V(i) ∈ R
∗|V(i)|
+ , L

(
i , (λij)j∈V(i)

)
< +∞.

2. Lower semi-continuity: ∀i ∈ I, L(i , ·) is lower semi-continuous.

3. Asymptotic super-linearity:

∀i ∈ I, lim
‖(λij )j∈V(i)‖∞→+∞

L
(
i , (λij)j∈V(i)

)
∥∥∥(λij)j∈V(i)

∥∥∥
∞

= +∞.

4. Boundedness from below (not really an assumption):∃C ∈ R,

∀i ∈ I, ∀ (λij)j∈V(i) ∈ R
|V(i)|
+ , L

(
i , (λij)j∈V(i)

)
≥ C .
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Consequences for the function H

Proposition

∀i ∈ I, the function H(i , ·) is finite and verifies the following properties:

• ∀p = (pj)j∈V(i) ∈ R|V(i)|,∃
(
λ∗ij
)
j∈V(i)

∈ R|V(i)|
+ ,

H(i , p) =

 ∑
j∈V(i)

λ∗ijpj

− L
(
i ,
(
λ∗ij
)
j∈V(i)

)
.

• H(i , ·) is convex on R|V(i)|. In particular it is locally Lipschitz.

• H(i , ·) is non-decreasing with respect to each coordinate.

We can therefore use Picard-Lindelöf theorem to get (local) existence

and uniqueness over an interval (τ,T ]

→ How to be sure that [0,T ] is included?
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Sketch of proof

Proof.

• Because of non-degeneracy H(i , p) 6= −∞.

• Because of asymptotic super-linearity, there is a compact set C such

that

sup
(λij)j∈V(i)

∈R|V(i)|
+

∑
j∈V(i)

λijpj

− L
(
i , (λij)j∈V(i)

)
= sup

(λij)j∈V(i)
∈C

∑
j∈V(i)

λijpj

− L
(
i , (λij)j∈V(i)

)
• Because L(i , ·) is l.s.c, the supremum is reached.

• Convexity of H(i , ·) derives from the definition of H(i , ·) as a supremum

of affine functions.

• Monotonicity of H(i , ·) derives from the fact that the intensities (λij)j∈V(i)

are nonnegative.
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of affine functions.

• Monotonicity of H(i , ·) derives from the fact that the intensities (λij)j∈V(i)

are nonnegative.
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From local to (half-)global existence

Proposition (Comparison principle)

Let t ′ ∈ (−∞,T ). Let (vi )i∈I and (wi )i∈I be two continuously

differentiable functions on [t ′,T ] such that

d

dt
vi (t)− rvi (t) + H

(
i , (vj(t)− vi (t))j∈V(i)

)
≥ 0,∀(i , t) ∈ I × [t ′,T ],

d

dt
wi (t)− rwi (t) + H

(
i , (wj(t)− wi (t))j∈V(i)

)
≤ 0,∀(i , t) ∈ I × [t ′,T ],

and vi (T ) ≤ wi (T ),∀i ∈ I.

Then vi (t) ≤ wi (t), ∀(i , t) ∈ I × [t ′,T ].
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Proof of the comparison principle

Proof.

Let ε > 0.

Let us define

z : (i , t) ∈ I × [t ′,T ] 7→ zi (t) = e−rt(vi (t)− wi (t)− ε(T − t)).

We have

d

dt
zi (t) = −re−rt(vi (t)− wi (t)− ε(T − t)) + e−rt

(
d

dt
vi (t)−

d

dt
wi (t) + ε

)
= e−rt

((
d

dt
vi (t)− rvi (t)

)
−
(

d

dt
wi (t)− rwi (t)

)
+ ε+ rε(T − t)

)
≥ e−rt

(
−H

(
i ,
(
vj (t)− vi (t)

)
j∈V(i)

)
+ H

(
i ,
(
wj (t)− wi (t)

)
j∈V(i)

))
+ e−rt (ε+ rε(T − t)) .
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Proof of the comparison principle

Proof.

Let us choose (i∗, t∗) ∈ I × [t ′,T ] maximizing z .

We now show by contradiction that t∗ = T .

t∗ < T =⇒ d

dt
zi∗ (t∗) ≤ 0 =⇒

H
(
i∗, ((vj (t∗)− vi∗ (t∗))j∈V(i∗)

)
≥ H

(
i∗, ((wj (t∗)− wi∗ (t∗))j∈V(i∗)

)
+ε+ rε(T − t∗).

By definition of (i∗, t∗), we know that

∀j ∈ V(i∗), vj (t∗)− wj (t∗) ≤ vi∗ (t∗)− wi∗ (t∗)

i.e.

∀j ∈ V(i∗), vj (t∗)− vi∗ (t∗) ≤ wj (t∗)− wi∗ (t∗) .
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Proof of the comparison principle

Proof.

From the monotonicity of H(i∗, ·), it follows that

H
(
i∗, (vj (t∗)− vi∗ (t∗))j∈V(i∗)

)
≤ H

(
i∗, (wj (t∗)− wi∗ (t∗))j∈V(i∗)

)
.

This contradicts the above inequality.

Therefore, t∗ = T , and we have:

∀(i , t) ∈ I × [t ′,T ], zi (t) ≤ zi∗(T ) = e−rT (vi∗(T )− wi∗(T )) ≤ 0.

Therefore, ∀(i , t) ∈ I × [t ′,T ], vi (t) ≤ wi (t) + ε(T − t) and we

conclude by sending ε to 0.
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Existence and uniqueness theorem

Theorem ((Half-)Global existence and uniqueness)

There exists a unique solution
(
V T ,r
i

)
i∈I

on (−∞,T ] to the

Hamilton-Jacobi/Bellman equation

∀i ∈ I, 0 =
d

dt
V T ,r
i (t)− rV T ,r

i (t)

+ sup
(λij )j∈V(i)∈R

|V(i)|
+

 ∑
j∈V(i)

λij

(
V T ,r
j (t)− V T ,r

i (t)
)− L

(
i , (λij)j∈V(i)

)
with terminal condition V T ,r

i (T ) = g(i), ∀i ∈ I.
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Proof of the existence and uniqueness theorem

Proof.

∀i ∈ I, the function H(i , ·) is locally Lipschitz. Therefore by

Picard-Lindelöf theorem there exists a (left-)maximal solution
(
V T ,r
i

)
i∈I

defined over (τ∗,T ], where τ∗ ∈ [−∞,T ).

Our goal is to prove by contradiction that τ∗ = −∞.

For C ∈ R, let us consider

vC : (i , t) ∈ I × (τ∗,T ] 7→ vC
i (t) = e−r(T−t) (g(i) + C (T − t)) .

We see that

d

dt
vC
i (t)− rvC

i (t) + H
(
i ,
(
vC
j (t)− vC

i (t)
)
j∈V(i)

)
=− Ce−r(T−t) + H

(
i , e−r(T−t) (g(j)− g(i))j∈V(i)

)
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Proof of the existence and uniqueness theorem

Proof.

If τ∗ is finite, the function

(i , t) ∈ I × (τ∗,T ] 7→ er(T−t)H
(
i , e−r(T−t)(g(j)− g(i))j∈V(i)

)
is bounded.

So, there exist C1 and C2 such that ∀(i , t) ∈ I × (τ∗,T ],

− C1e
−r(T−t) + H

(
i , e−r(T−t)(g(j)− g(i))j∈V(i)

)
≥ 0, and

− C2e
−r(T−t) + H

(
i , e−r(T−t)(g(j)− g(i))j∈V(i)

)
≤ 0.

Applying the above comparison principle over any interval

[t ′,T ] ⊂ (τ∗,T ], we obtain:

∀(i , t) ∈ I × [t ′,T ], vC1

i (t) ≤ V T ,r
i (t) ≤ vC2

i (t).
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Proof of the existence and uniqueness theorem

Proof.

By sending t ′ to τ∗ we obtain

∀(i , t) ∈ I × (τ∗,T ], vC1

i (t) ≤ V T ,r
i (t) ≤ vC2

i (t).

In particular, τ∗ finite implies that the functions
(
V T ,r
i

)
i∈I

are

bounded... in contradiction with the maximality of τ∗.

In the proof of the above results, the convexity of the Hamiltonian

functions (H(i , ·))i∈I does not play any role.

The results indeed hold as soon as the Hamiltonian functions are locally

Lipschitz and non-decreasing with respect to each coordinate.
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Going back to the optimal control problem

Theorem (Verification theorem)

• ∀(i , t) ∈ I × [0,T ], uT ,ri (t) = V T ,r
i (t).

• The optimal controls are given by any feedback control function
verifying for all i ∈ I, for all j ∈ V(i), and for all t ∈ [0,T ],

λ∗t (i , j)∈ argmax

(λij)j∈V(i)
∈R|V(i)|

+

 ∑
j∈V(i)

λij

(
uT ,rj (t)− uT ,ri (t)

)− L
(
i ,
(
λij
)
j∈V(i)

) .

The above argmax is a always singleton if the Hamiltonian functions

(H(i , ·))i are differentiable (which is guaranteed if (L(i , ·))i are convex

functions that are strictly convex on their domain).

39



Going back to the optimal control problem

Theorem (Verification theorem)

• ∀(i , t) ∈ I × [0,T ], uT ,ri (t) = V T ,r
i (t).

• The optimal controls are given by any feedback control function
verifying for all i ∈ I, for all j ∈ V(i), and for all t ∈ [0,T ],

λ∗t (i , j)∈ argmax

(λij)j∈V(i)
∈R|V(i)|

+

 ∑
j∈V(i)

λij

(
uT ,rj (t)− uT ,ri (t)

)− L
(
i ,
(
λij
)
j∈V(i)

) .

The above argmax is a always singleton if the Hamiltonian functions

(H(i , ·))i are differentiable (which is guaranteed if (L(i , ·))i are convex

functions that are strictly convex on their domain).

39



Going back to the optimal control problem

Theorem (Verification theorem)

• ∀(i , t) ∈ I × [0,T ], uT ,ri (t) = V T ,r
i (t).

• The optimal controls are given by any feedback control function
verifying for all i ∈ I, for all j ∈ V(i), and for all t ∈ [0,T ],

λ∗t (i , j)∈ argmax

(λij)j∈V(i)
∈R|V(i)|

+

 ∑
j∈V(i)

λij

(
uT ,rj (t)− uT ,ri (t)

)− L
(
i ,
(
λij
)
j∈V(i)

) .

The above argmax is a always singleton if the Hamiltonian functions

(H(i , ·))i are differentiable (which is guaranteed if (L(i , ·))i are convex

functions that are strictly convex on their domain).

39



Going back to the optimal control problem

Theorem (Verification theorem)

• ∀(i , t) ∈ I × [0,T ], uT ,ri (t) = V T ,r
i (t).

• The optimal controls are given by any feedback control function
verifying for all i ∈ I, for all j ∈ V(i), and for all t ∈ [0,T ],

λ∗t (i , j)∈ argmax

(λij)j∈V(i)
∈R|V(i)|

+

 ∑
j∈V(i)

λij

(
uT ,rj (t)− uT ,ri (t)

)− L
(
i ,
(
λij
)
j∈V(i)

) .

The above argmax is a always singleton if the Hamiltonian functions

(H(i , ·))i are differentiable (which is guaranteed if (L(i , ·))i are convex

functions that are strictly convex on their domain).

39



Going back to the optimal control problem

Theorem (Verification theorem)

• ∀(i , t) ∈ I × [0,T ], uT ,ri (t) = V T ,r
i (t).

• The optimal controls are given by any feedback control function
verifying for all i ∈ I, for all j ∈ V(i), and for all t ∈ [0,T ],

λ∗t (i , j)∈ argmax

(λij)j∈V(i)
∈R|V(i)|

+

 ∑
j∈V(i)

λij

(
uT ,rj (t)− uT ,ri (t)

)− L
(
i ,
(
λij
)
j∈V(i)

) .

The above argmax is a always singleton if the Hamiltonian functions

(H(i , ·))i are differentiable (which is guaranteed if (L(i , ·))i are convex

functions that are strictly convex on their domain).

39



What’s next?

• In many problems, there is no final time T (e.g. no natural T in the

(re)commerce problem)

• What happens when T →∞?

• What is the asymptotic behavior of the value function?

• What is the asymptotic behavior of the optimal controls / optimal

transition intensities?

Two cases: r > 0 and r = 0
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A general theory for optimal control on

graphs – Asymptotics when r > 0

41



Study of the r > 0 case

Proposition

∃(uri )i∈I ∈ RN ,∀(i , t) ∈ I × R+, lim
T→+∞

uT ,ri (t) = uri .

Furthermore, (uri )i∈I satisfies the following stationary Bellman equation:

−ruri + H
(
i ,
(
urj − uri

)
j∈V(i)

)
= 0, ∀i ∈ I.
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Study of the r > 0 case

Proof.

Let us define

uri = sup
λ
E
[
−
∫ +∞

0

e−rtL

(
X 0,i,λ
t ,

(
λt

(
X 0,i,λ
t , j

))
j∈V(X 0,i,λ

t )

)
dt

]
.

It is finite because L is bounded from below and because of the

non-degeneracy assumption (we will see it more precisely later).

Let us consider an optimal control λ∗ of the optimal control problem over

[0,T ].

Let us define a control λ on [0,+∞) by:

• λt = λ∗t for t ∈ [0,T ],

• λt(i , j) = λ̃(i , j) for t > T , where λ̃ is such that

L
(
i , (λ̃(i , j))j∈V(i))

)
< +∞.
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Study of the r > 0 case

Proof.

uri ≥ E

− ∫ ∞
0

e−rt L

X
0,i,λ
t ,

(
λt

(
X

0,i,λ
t , j

))
j∈V

(
X

0,i,λ
t

) dt



≥ E

− ∫ T

0
e−rt L

X
0,i,λ∗
t ,

(
λ
∗
t

(
X

0,i,λ∗
t , j

))
j∈V

(
X

0,i,λ∗
t

)
 dt



+E

−
∫ ∞
T

e−rt L

X
T,X

0,i,λ∗
T

,λ

t ,

λt
X

T,X
0,i,λ∗
T

,λ

t , j




j∈V

X
T,X

0,i,λ∗
T

,λ

t



 dt


≥ u

T,r
i

(0) − e−rT g

(
X

0,i,λ∗
T

)

+e−rT E

−
∫ ∞
T

e−r(t−T )L

X
T,X

0,i,λ∗
T

,λ̃

t ,

λ̃t
X

T,X
0,i,λ∗
T

,λ̃

t , j




j∈V

X
T,X

0,i,λ∗
T

,λ̃

t



 dt


≥ u

T,r
i

(0) − e−rT g

(
X

0,i,λ∗
T

)
−

M

r
e−rT

.

So lim supT→+∞ uT ,ri (0) ≤ uri .
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Study of the r > 0 case

Proof.

Let us consider ε > 0 and λε such that

uri − ε ≤ E
[
−
∫ ∞

0

e−rtL

(
X 0,i,λε

t ,
(
λεt

(
X 0,i,λε

t , j
))

j∈V(X 0,i,λε

t )

)
dt

]
.

We have

uri − ε ≤ E

− ∫ T

0
e−rt L

X
0,i,λε

t ,

(
λ
ε
t

(
X

0,i,λε

t , j

))
j∈V

(
X

0,i,λε
t

)
 dt



+E

−
∫ ∞
T

e−rt L

X
T,X

0,i,λε

T
,λε

t ,

λεt
X

T,X
0,i,λε

T
,λε

t , j




j∈V

X
T,X

0,i,λε

T
,λε

t



 dt


≤ u

T,r
i

(0) − e−rT g

(
X

0,i,λε

T

)
− e−rT C

r

So lim infT→+∞ uT ,ri (0) ≥ uri − ε.
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Study of the r > 0 case

Proof.

By sending ε to 0, we obtain limT→+∞ uT ,ri (0) = uri .

We easily see that

∀i ∈ I,∀s, t ∈ R+,∀T > t, uT+s,r
i (t) = uT+s−t,r

i (0) = V T ,r
i (t − s).

Therefore

∀(i , t) ∈ I × R+, lim
T→+∞

uT ,ri (t) = uri = lim
s→−∞

V T ,r
i (s)

Using the ODEs, we see that d
dt

(
V T ,r
i

)
i∈I

has a finite limit in −∞.

But, then, that limit is equal to 0.

By passing to the limit in the ODEs, we obtain

−ruri + H
(
i ,
(
urj − uri

)
j∈V(i)

)
= 0, ∀i ∈ I.
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The limit case r → 0

47



What happens when r → 0

For studying the asymptotic behavior (as T → +∞) in the case r = 0, a

first step consists in studying what happens when r → 0 in the above.

Our goal is to prove the following proposition:

Proposition

We have:

• ∃γ ∈ R,∀i ∈ I, limr→0 ru
r
i = γ.

• There exists a sequence (rn)n∈N converging towards 0 such that

∀i ∈ I, (urni − urn1 )n∈N is convergent.

• For all i ∈ I, if ξi = limn→+∞ urni − urn1 , then we have

−γ + H
(
i , (ξj − ξi )j∈V(i)

)
= 0.
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A first lemma to study r → 0

Lemma

We have:

1. ∀i ∈ I, r ∈ R∗+ 7→ ruri is bounded;

2. ∀i ∈ I, ∀j ∈ V(i), r ∈ R∗+ 7→ urj − uri is bounded.

Proof.

Let us choose (λ(i , j))i∈I,j∈V(i) ∈ A as in the non-degeneracy

assumption.

By definition of uri we have

ur
i ≥ E

[
−
∫ +∞

0

e−rtL

(
X 0,i,λ

t ,
(
λ
(
X 0,i,λ

t , j
))

j∈V
(
X

0,i,λ
t

)
)
dt

]

≥
∫ +∞

0

e−rt inf
k
−L
(
k, (λ(k, j))j∈V(k)

)
dt

≥ 1

r
inf
k
−L
(
k, (λ(k, j))j∈V(k)

)
.
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A first lemma to study r → 0

Proof.

From the (lower) boundedness of the functions (L(i , ·))i∈I , we also have

for all (λ(i , j))i∈I,j∈V(i) that

E
[
−
∫ +∞

0

e−rtL

(
X 0,i,λ
t ,

(
λ
(
X 0,i,λ
t , j

))
j∈V(X 0,i,λ

t )

)
dt

]
≤ −C

∫ +∞

0

e−rtdt = −C

r
.

Therefore, uri ≤ −
C
r .

We conclude that r 7→ ruri is bounded.
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A first lemma to study r → 0

Proof.

Take a family of positive intensities (λ(i , j))i∈I,j∈V(i) as in the

non-degeneracy assumption.

Because the finite graph is connected, for all (i , j) ∈ I2 the stopping time

defined by τ ij = inf
{
t > 0

∣∣∣X 0,i,λ
t = j

}
verifies E

[
τ ij
]
< +∞.

So ∀(i , j) ∈ I2, we have

uri +
C

r
≥ E

[∫ τ ij

0
e−rt

(
−L
(
X 0,i,λ
t ,

(
λ
(
X 0,i,λ
t , j

))
j∈V

(
X

0,i,λ
t

)
)

+ C

)
dt

+e−rτ ij
(
urj +

C

r

)]
≥ E

[∫ τ ij

0
e−rtdt

](
inf
k
−L
(
k, (λ(k, j))j∈V(k)

)
+ C

)
+ E

[
e−rτ ij

](
urj +

C

r

)
≥ E

[
τ ij
](

inf
k
−L
(
k, (λ(k, j))j∈V(k)

)
+ C

)
+ urj +

C

r
.

So urj − uri ≤ −E
[
τ ij
] (

infk −L
(
k, (λ(k, j))j∈V(k)

)
+ C

)
.
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A second lemma to study r → 0

We now come to a comparison principle:

Lemma

Let ε > 0. Let (vi )i∈I and (wi )i∈I be such that

−εvi + H
(
i , (vj − vi )j∈V(i)

)
≥ −εwi + H

(
i , (wj − wi )j∈V(i)

)
, ∀i ∈ I.

Then ∀i ∈ I, vi ≤ wi .
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A second lemma to study r → 0

Proof.

Let us consider (zi )i∈I = (vi − wi )i∈I .

Let us choose i∗ ∈ I such that zi∗ = maxi∈I zi .

By definition of i∗, we know that

∀j ∈ V(i∗), vi∗ − wi∗ ≥ vj − wj

i.e.

∀j ∈ V(i∗), vj − vi∗ ≤ wj − wi∗

Because H(i∗, ·) is nondecreasing

H
(
i∗, (vj − vi∗)j∈V(i∗)

)
≤ H

(
i∗, (wj − wi∗)j∈V(i∗)

)
.

We have therefore ε(vi∗ − wi∗) ≤ 0, so

∀i ∈ I, vi − wi ≤ vi∗ − wi∗ ≤ 0.
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A third lemma to study r → 0

The last lemma to prove the result is:

Lemma

Let η, µ ∈ R. Let (vi )i∈I and (wi )i∈I be such that

− η + H
(
i , (vj − vi )j∈V(i)

)
= 0, ∀i ∈ I,

− µ+ H
(
i , (wj − wi )j∈V(i)

)
= 0, ∀i ∈ I.

Then η = µ.
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A third lemma to study r → 0

Proof.

By contradiction, we can assume η > µ (up to an exchange).

Let

C = sup
i∈I

(wi − vi ) + 1

and

ε =
η − µ

supi∈I(wi − vi )− inf i∈I(wi − vi ) + 1
=

η − µ
C + supi∈I(vi − wi )

.

From these definitions, we have

∀i ∈ I, vi + C > wi and 0 ≤ ε(vi − wi + C ) ≤ η − µ.

We obtain

ε(vi − wi + C ) ≤ H
(
i , (vj − vi )j∈V(i)

)
− H

(
i , (wj − wi )j∈V(i)

)
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A third lemma to study r → 0

Proof.

Reorganizing the terms, we have

−εwi +H
(
i , (wj − wi )j∈V(i)

)
≤ −ε(vi +C)+H

(
i , ((vj + C)− (vi + C))j∈V(i)

)
.

From the previous lemma it follows that ∀i ∈ I, vi + C ≤ wi , in

contradiction with the definition of C .

We conclude η = µ.
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What happens when r → 0

We are now ready to prove our proposition:

Proposition

We have:

• ∃γ ∈ R,∀i ∈ I, limr→0 ru
r
i = γ.

• There exists a sequence (rn)n∈N converging towards 0 such that

∀i ∈ I, (urni − urn1 )n∈N is convergent.

• For all i ∈ I, if ξi = limn→+∞ urni − urn1 , then we have

−γ + H
(
i , (ξj − ξi )j∈V(i)

)
= 0.
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Proof of what happens when r → 0

Proof.

From the first lemma, we can consider a sequence (rn)n∈N converging

towards 0, such that

rnu
rn
i → γi

and

urni − urn1 → ξi .

We have

0 = lim
n→+∞

rn(urni − urn1 ) = lim
n→+∞

rnu
rn
i − lim

n→+∞
rnu

rn
1 = γi − γ1.

Therefore, γi = γ is independent of i .
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Proof of what happens when r → 0

Proof.

Passing to the limit when n→ +∞ in

−rnurni + H

(
i ,
(
urnj − urni

)
j∈V(i)

)
= 0

we obtain

−γ + H
(
i , (ξj − ξi )j∈V(i)

)
= 0.

To complete the proof, we need to prove that γ is independent of the

choice of the sequence (rn)n∈N: this is a consequence of third lemma.
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Comments on the limit case r → 0

• The equation

−γ + H
(
i , (ξj − ξi )j∈V(i)

)
= 0

is central in the study of the limit T → +∞ when r = 0.

• In the above equation, γ is unique (third lemma).

• Under some additional assumptions (ξi )i can be unique up a

constant.
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When the Hamiltonian functions are increasing

Proposition

Assume that ∀i ∈ I,H(i , ·) is increasing with respect to each coordinate.

Let (vi )i∈I and (wi )i∈I be such that

− γ + H
(
i , (vj − vi )j∈V(i)

)
= 0, ∀i ∈ I,

− γ + H
(
i , (wj − wi )j∈V(i)

)
= 0, ∀i ∈ I.

Then ∃C ,∀i ∈ I,wi = vi + C , i.e. uniqueness is true up to a constant.
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When the Hamiltonian functions are increasing

Proof.

Let us consider C = supi∈I wi − vi .

By contradiction, assume there exists j ∈ I such that vj + C > wj .

Because the graph is connected, we can find i∗ ∈ I such that

vi∗ + C = wi∗ and such that there exists j∗ ∈ V(i∗) satisfying

vj∗ + C > wj∗ .

The strict monotonicity of the Hamiltonian functions implies that

H
(
i∗, ((vj + C )− (vi∗ + C ))j∈V(i∗)

)
> H

(
i , (wj − wi∗)j∈V(i∗)

)
in contradiction with the definition of (vi )i∈I and (wi )i∈I .

Therefore ∀i ∈ I,wi = vi + C .
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A general theory for optimal control on

graphs – Asymptotics when r = 0

63



A change of variables

• Compared to the case r > 0, the case r = 0 is more subtle and more

complex.

• uT ,0i (0) is not indeed the right “object”, but rather uT ,0i (0)− γT
that will converge towards a finite limit → γ will appear to be the

average gain per unit of time.

• To study the problem, we consider a change of variables:

∀i ∈ I,Ui : t ∈ R∗+ 7→ uT ,0i (T − t)

This function solves

− d

dt
Ui (t) + H

(
i , (Uj(t)− Ui (t))j∈V(i)

)
= 0, ∀(i , t) ∈ I × R+

with ∀i ∈ I, Ui (0) = g(i).
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average gain per unit of time.

• To study the problem, we consider a change of variables:

∀i ∈ I,Ui : t ∈ R∗+ 7→ uT ,0i (T − t)

This function solves

− d

dt
Ui (t) + H

(
i , (Uj(t)− Ui (t))j∈V(i)

)
= 0, ∀(i , t) ∈ I × R+

with ∀i ∈ I, Ui (0) = g(i).
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Towards convergence

For any constant C , let us introduce

wC : (i , t) ∈ I × [0,+∞) 7→ wC
i (t) = γt + ξi + C

We have

− d

dt
wC
i (t) + H

(
i ,
(
wC
j (t)− wC

i (t)
)
j∈V(i)

)
= −γ + H

(
i , (ξj − ξi )j∈V(i)

)
= 0
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Towards convergence

The ODEs for U satisfy a comparison priciple similar to that proved

earlier.

We can build a lower bound wC1 and an upper bound wC2 by:

wC1

i (t) = γt + ξi + C1 with C1 = minj(g(j)− ξj)
wC2

i (t) = γt + ξi + C2 with C2 = maxj(g(j)− ξj)

We deduce that v̂ : t ∈ [0,+∞) 7→ U(t)− γt~1 is bounded

→ Our goal is to show that it converges when t → +∞ under the

assumption of strict monotonicity for H.
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A slightly modified equation and its properties

v̂ solves the slightly modified equation

− d

dt
v̂i (t)− γ + H

(
i , (v̂j(t)− v̂i (t))j∈V(i)

)
= 0, ∀(i , t) ∈ I × R+

with ∀i ∈ I, v̂i (0) = g(i).

We introduce for all (s, y) ∈ R+ × RN the equation

− d

dt
ŷi (t)− γ + H

(
i , (ŷj(t)− ŷi (t))j∈V(i)

)
= 0,∀(i , t) ∈ I × [s,+∞),

(Es,y )

with ŷi (s) = yi ,∀i ∈ I.
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First property: comparison principle

Proposition (Comparison principle)

Let s ∈ R+. Let (y
i
)i∈I and (y i )i∈I be two continuously differentiable

functions on [s,+∞) such that

− d

dt
y
i
(t)− γ + H

(
i ,
(
y
j
(t)− y

i
(t)
)
j∈V(i)

)
≥ 0, ∀(i , t) ∈ I × [s,+∞),

− d

dt
y i (t)− γ + H

(
i ,
(
y j(t)− y i (t)

)
j∈V(i)

)
≤ 0, ∀(i , t) ∈ I × [s,+∞),

and ∀i ∈ I, y
i
(s) ≤ y i (s).

Then y
i
(t) ≤ y i (t),∀(i , t) ∈ I × [s,+∞).
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Second property: strong maximum principle

Proposition (Strong maximum principle)

Let s ∈ R+. Let (y
i
)i∈I and (y i )i∈I be two continuously differentiable

functions on [s,+∞) such that

− d

dt
y
i
(t)− γ + H

(
i ,
(
y
j
(t)− y

i
(t)
)
j∈V(i)

)
= 0, ∀(i , t) ∈ I × [s,+∞),

− d

dt
y i (t)− γ + H

(
i ,
(
y j(t)− y i (t)

)
j∈V(i)

)
= 0, ∀(i , t) ∈ I × [s,+∞),

and y(s) � y(s), i.e. ∀j ∈ I, y
j
(s) ≤ y j(s) and ∃i ∈ I, y

i
(s) < y i (s).

Then y
i
(t) < y i (t),∀(i , t) ∈ I × (s,+∞).
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Second property: strong maximum principle

Proof.

If there exists (i , t̄) ∈ I × (s,+∞) such that y
i
(t̄) = y i (t̄), then t̄ is a

maximizer of the function t ∈ (s,+∞) 7→ y
i
(t)− y i (t). Hence,

d
dt y i

(t̄) = d
dt y i (t̄).

We deduce that

y
i
(t̄) = y i (t̄) =⇒ H

(
i ,
(
y
j
(t̄)− y

i
(t̄)
)
j∈V(i)

)
= H

(
i ,
(
y j(t̄)− y i (t̄)

)
j∈V(i)

)
Because H(i , ·) is increasing,

y
i
(t̄) = y i (t̄) =⇒ ∀j ∈ V(i), y

j
(t̄) = y j(t̄)

As the graph is connected,

y
i
(t̄) = y i (t̄) =⇒ ∀j ∈ I, y

j
(t̄) = y j(t̄)
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Second property: strong maximum principle

Proof.

If there exists (i , t̄) ∈ I × (s,+∞) such that y
i
(t̄) = y i (t̄), we define

F =
{
t ∈ (s,+∞),∀j ∈ I, y

j
(t) = y j(t)

}
.

We have:

• F is nonempty since t̄ ∈ F .

• F is also closed.

• y(s) � y(s) implies that t∗ = inf F = minF > s.

y and y are two local solutions of the Cauchy problem (Et∗,y(t∗)) so they

are equal in a neighborhood of t∗... which contradicts the definition of t∗.

We conclude that

y
i
(t) < y i (t),∀(i , t) ∈ I × (s,+∞).
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Third property: semi-group and continuity

For all t ∈ R+, we introduce the operator S(t) : y ∈ RN 7→ ŷ(t) ∈ RN ,

where ŷ is the solution of (E0,y ).

Proposition

S satisfies the following properties:

• ∀t, t ′ ∈ R+,S(t) ◦ S(t ′) = S(t + t ′) = S(t ′) ◦ S(t).

• ∀t ∈ R+,∀x , y ∈ RN , ‖S(t)(x)− S(t)(y)‖∞ ≤ ‖x − y‖∞ . In

particular, S(t) is continuous.
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Third property: semi-group and continuity

Proof.

The first point is trivial (Picard-Lindelöf).

For the second point, let us introduce

y : t ∈ R+ 7→ S(t)(x) and y : t ∈ R+ 7→ S(t)(y) + ‖x − y‖∞~1

We have y(0) = x ≤ y + ‖x − y‖∞~1 = y(0), so

∀t ∈ R+, y(t) ≤ y(t)

i.e.

∀t ∈ R+, S(t)(x) ≤ S(t)(y) + ‖x − y‖∞~1.

Reversing the role of x and y we obtain

‖S(t)(x)− S(t)(y)‖∞ ≤ ‖x − y‖∞ .
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Dynamics of the upper bound

In order to study the asymptotic behavior of v̂ , we define the function

q : t ∈ R+ 7→ q(t) = sup
i∈I

(v̂i (t)− ξi ).

We have the following lemma:

Lemma

q is a nonincreasing function, bounded from below. We denote by

q∞ = limt→+∞ q(t) its lower bound.
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Dynamics of the upper bound

Proof.

Let s ∈ R+. Let us define y : (i , t) ∈ I × [s,∞) 7→ v̂i (t) and

y : (i , t) ∈ I × [s,∞) 7→ q(s) + ξi .

We have ∀i ∈ I, y
i
(s) ≤ y i (s) and

− d

dt
y i (t)− γ + H

(
i ,
(
y j(t)− y i (t)

)
j∈V(i)

)
= −γ + H

(
i , (ξj − ξi )j∈V(i)

)
= 0,∀(i , t) ∈ I × [s,+∞).

We conclude that ∀(i , t) ∈ I × [s,+∞), y
i
(t) ≤ y i (t), i.e.

v̂i (t) ≤ q(s) + ξi . In particular q(t) ≤ q(s),∀t ≥ s.

Because v̂ is bounded, so is q and its limit q∞ = limt→+∞ q(t).
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The convergence theorem

Theorem

The asymptotic behavior of v̂ is given by

∀i ∈ I, lim
t→+∞

v̂i (t) = ξi + q∞.
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The convergence theorem

Proof.

As v̂ is bounded, there exists (tn)n converging towards +∞ such that

v̂(tn)→ v̂∞ ≤ ξ + q∞~1.

Because v̂ is bounded and satisfies (E0,y ) for y = (yi )i∈I = (g(i))i∈I , we

can apply Arzelà–Ascoli theorem to

K = {s ∈ [0, 1] 7→ v̂(tn + s)|n ∈ N} .

There exists a subsequence
(
tφ(n)

)
n

and a function z ∈ C 0
(
[0, 1],RN

)
such that

(
s ∈ [0, 1] 7→ v̂

(
tφ(n) + s

))
n

converges uniformly towards z
(with z(0) = v̂∞). Using the results on the semi-group, we have that z

solves the ODEs:

∀t ∈ [0, 1],S(t)(z(0)) = S(t)

(
lim

n→+∞
v̂
(
tφ(n)

))
= lim

n→+∞
S(t)

(
v̂
(
tφ(n)

))
= lim

n→+∞
v̂
(
t + tφ(n)

)
= z(t).
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The convergence theorem

Proof.

Now, if

z(0) = v̂∞ � ξ + q∞~1

then the strong maximum principle implies that

z(1) < ξ + q∞~1.

Therefore there exists n ∈ N such that v̂
(
tφ(n) + 1

)
< ξ + q∞~1. This

implies q
(
tφ(n) + 1

)
< q∞: a contradiction.

This means that z(0) = v̂∞ = ξ + q∞~1.

In other words, for any sequence (tn)n converging towards +∞ such that

(v̂(tn))n is convergent, the limit is ξ + q∞~1.

This means that ∀i ∈ I, limt→+∞ v̂i (t) = ξi + q∞.
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Conclusion for the optimal control problem

Corollary

The asymptotic behavior of the value functions associated with our

problem when r = 0 is given by

∀i ∈ I,∀t ∈ R+, u
T ,r
i (t) = γ(T − t) + ξi + q∞ + o

T→+∞
(1).

The limit points of the associated optimal controls for all t ∈ R+ as
T → +∞ are feedback control functions verifying ∀i ∈ I,∀j ∈ V(i):

λ(i , j) ∈ argmax

(λij)j∈V(i)
∈R|V(i)|

+

 ∑
j∈V(i)

λij (ξj − ξi )

− L
(
i ,
(
λij
)
j∈V(i)

)

Remark: if (L(i , ·))i are convex functions that are strictly convex on their

domain, the Hamiltonian functions (H(i , ·))i are differentiable and the

optimal controls converge towards the unique element of the above

argmax.
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Conclusions about the general theory

What we have seen

• We have seen that optimal control problems on graphs appear

naturally.

• We have provided, under simple assumptions, a way to characterize

optimal controls (with ODEs).

• We have generalized the results to the case of infinite horizon

problems when r > 0 (stationary problems).

• We have obtained a (difficult) result on the asymptotic behavior far

from T when r = 0.

What we are going to see now

• A special case where all equations can be transformed into linear

ones

→ Intensive use of linear algebra and matrix analysis.

• An important application to market making: the solution to

Avellaneda-Stoikov equations.
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Entropic costs: when nonlinearities vanish
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Introduction

We previously considered a general framework. In what follows we

consider a specific case of interest:

Assumptions

• No discount rate: r = 0

• Functions L of the following form:

L(i , ·) : (λij)j∈V(i) ∈ R
|V(i)|
+ 7→ L

(
i , (λij)j∈V(i)

)
where

L
(
i , (λij)j∈V(i)

)
= −h(i) +

∑
j∈V(i)

(λij log(λij) + bijλij)

• These functions L satisfy the assumptions of the previous sections.

• Because of the term
∑

j∈V(i) λij log(λij), we talk of entropic costs.
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The Hamiltonian functions

The interest of this family of cost functions lies in the resulting form of

the Hamiltonian functions:

Proposition

∀i ,∀p = (pj)j∈V(i) ∈ R|V(i)|,

H(i , p) = h(i) +
∑

j∈V(i)

e−1−bij epj .

Moreover, the supremum in the definition of H(i , p) is reached when

∀j ∈ V(i), λij = λ∗ij = e−1−bij epj .
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The Hamiltonian functions

Proof.

H(i , p) = h(i) + sup
(λij )j∈V(i)∈R

|V(i)|
+

∑
j∈V(i)

(λijpj − (λij log(λij) + bijλij)) .

The first order condition associated with the supremum writes:

∀j ∈ V(i), pj − log(λ∗ij)− 1− bij = 0

i.e.

∀j ∈ V(i), λ∗ij = e−1−bij epj .

Plugging that formula, we obtain

H(i , p) = h(i) +
∑

j∈V(i)

e−1−bij epj .
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Hamilton-Jacobi / Bellman equations

The ODEs characterizing the value function writes:

∀(i , t) ∈ I × [0,T ],

d

dt
V T
i (t) + H

(
i ,
(
V T
j (t)− V T

i (t)
)
j∈V(i)

)
= 0

with terminal condition V T
i (T ) = g(i), ∀i ∈ I.

In the present case:

∀(i , t) ∈ I × [0,T ],

d

dt
V T
i (t) + h(i) +

∑
j∈V(i)

e−1−bij exp
(
V T
j (t)− V T

i (t)
)

= 0

with terminal condition V T
i (T ) = g(i), ∀i ∈ I.
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Change of variables

Let us introduce the change of variables

∀(i , t) ∈ I × [0,T ],wT
i (t) = exp

(
V T
i (t)

)
Then the system of ODEs writes

∀(i , t) ∈ I × [0,T ],

d

dt
wT
i (t) + h(i)wT

i (t) +
∑

j∈V(i)

e−1−bijwT
j (t) = 0

with terminal condition wT
i (T ) = eg(i), ∀i ∈ I.

This is a system of linear ODEs!
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Solution to the ODEs

Proposition

Let B = (Bij)(i,j)∈I2 be the matrix defined by

Bij =


e−1−bij , if j ∈ V(i),

h(i), if j = i ,

0, otherwise.

Let g be the column vector (eg(1), . . . , eg(N))′.

Then, wT : t ∈ [0,T ] 7→ wT (t) = eB(T−t)g is the unique solution to the

above system of ODEs

Remark: wT (t) > 0 (as a vector) is a consequence of the positiveness of

esupi |h(i)|(T−t)wT (t) = e(B+supi |h(i)|IN )(T−t)g > 0
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Value function and optimal controls

Theorem

We have:

• ∀i ∈ I,∀t ∈ [0,T ], uTi (t) = log(wT
i (t)).

• The optimal controls are given in feedback form by:

∀i ∈ I,∀j ∈ V(i),∀t ∈ [0,T ], λ∗t (i , j) = e−1−bij
wT
j (t)

wT
i (t)

.

A question remains: what can we say about the asymptotic

regime?

We can guess that the ergodic constant γ and the vector ξ are linked to

spectral properties of B: a matrix with nonnegative off-diagonal entries.
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Classical results on nonnegative matrices

90



Some definitions

Definition

Given two matrices A,B ∈ Mn,p(C), we say that

• A ≤ B if the entries of B − A are all real and nonnegative.

• A < B if the entries of B − A are all real and positive.

We say that A is nonnegative (resp. positive) if A ≥ 0 (resp. A > 0).

For A = (aij)ij ∈ Mn,p(C), we define |A| = (|aij |)ij

Remark: The definitions apply to column vectors (p = 1).
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Some definitions

Definition

Given a matrix A ∈ Mn(C) we define

• Sp(A) the set of its eigenvalues.

• SpR(A) = Sp(A) ∩ R the set of its real eigenvalues.

• ρ(A) = sup{|z ||z ∈ Sp(A)} the spectral radius of A.
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Spectral radius and convergence of powers

A first classical result about spectral radius is the following:

Proposition

Let A ∈ Mn(C).

lim
m→+∞

Am = 0 ⇐⇒ ρ(A) < 1

Proof.

⇒ is trivial using a Jordan decomposition and looking at diagonal terms.

⇐ Each Jordan block of A writes Ã = λI + J where J is nilpotent of

index p and |λ| < 1.

We have therefore for m ≥ p:

Ãm =

p−1∑
k=0

C k
mλ

m−kJk →m→+∞ 0
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Ãm =

p−1∑
k=0

C k
mλ

m−kJk →m→+∞ 0

93



Spectral radius and convergence of powers

A first classical result about spectral radius is the following:

Proposition

Let A ∈ Mn(C).

lim
m→+∞

Am = 0 ⇐⇒ ρ(A) < 1

Proof.

⇒ is trivial using a Jordan decomposition and looking at diagonal terms.

⇐ Each Jordan block of A writes Ã = λI + J where J is nilpotent of

index p and |λ| < 1.

We have therefore for m ≥ p:
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Spectral radius: Gelfand’s formula

Proposition (Gelfand’s formula)

Let A ∈ Mn(C).

ρ(A) = lim
m→+∞

‖Am‖1/m

for any norm on Mn(C).

Proof.

Because of the equivalence of norms, we easily see that the result needs

to be proved for one norm only.

We choose a matrix norm induced by a norm on Rn.

If x is an eigenvector of A for the eigenvalue λ with |λ| = ρ(A), then

ρ(A)‖x‖ = ‖λx‖ = ‖Ax‖ ≤ ‖A‖‖x‖

So ρ(A) ≤ ‖A‖ and ρ(A) = ρ(Am)1/m ≤ ‖Am‖1/m.
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Spectral radius: Gelfand’s formula

Proof.

Now, for any ε > 0, ρ
(

A
ρ(A)+ε

)
< 1. Therefore, there exists mε ∈ N such

that ∀m ≥ mε: ∥∥∥∥( A

ρ(A) + ε

)m∥∥∥∥ ≤ 1

i.e.

‖Am‖1/m ≤ ρ(A) + ε.

We conclude that

lim
m→+∞

‖Am‖1/m = ρ(A)
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Spectral radius: comparison for nonnegative matrices

Proposition

Let A,B ∈ Mn(R) and assume 0 ≤ A ≤ B.

Then,

ρ(A) ≤ ρ(B)

Proof.

0 ≤ A ≤ B ⇒ 0 ≤ Am ≤ Bm → ‖Am‖ ≤ ‖Bm‖

where the norm on matrices is the 2-norm (Frobenius norm).

Using Gelfand’s formula, we obtain ρ(A) ≤ ρ(B).
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Positive matrices: a first lemma

We now focus on the case of positive matrices. We have a first

(important) lemma:

Lemma

Let A ∈ Mn(R) be a positive matrix.

Let x , y ∈ Rn.

x ≤ y and x 6= y =⇒ Ax < Ay

=⇒ ∃ε > 0, (1 + ε)Ax < Ay

Proof.

For all i ∈ I,

(A(y − x))i =
n∑

j=1

Aij(yj − xj) ≥ min
k

Aik︸ ︷︷ ︸
>0

n∑
j=1

(yj − xj)︸ ︷︷ ︸
>0

> 0

So Ax < Ay and there exists ε > 0, such that (1 + ε)Ax < Ay .
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Positive matrices: Perron’s theorem

We are now ready to state a fundamental theorem for positive matrices:

Theorem (Perron’s theorem)

Let A ∈ Mn(R) be a positive matrix. We have the following:

• ρ(A) > 0.

• ρ(A) is an eigenvalue of A.

• the associated eigenspace is of dimension 1 and spanned by a

positive vector.

• the algebraic multiplicity of ρ(A) is 1.
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Positive matrices: Perron’s theorem

Proof.

ρ(A) > 0 as Tr(A) > 0.

Let (λ, x) be an eigenpair with |λ| = ρ(A).

Ax = λx =⇒ ρ(A)|x | = |Ax | ≤ A|x |

If ρ(A)|x | 6= A|x |, there exists ε > 0 such that

(1 + ε)ρ(A)A|x | < A2|x |

So (1 + ε)ρ(A)2|x | < A2|x | and we can iterate:

(1 + ε)2ρ(A)3|x | = (1 + ε)2ρ(A)2ρ(A)|x | ≤ (1 + ε)2ρ(A)2A|x | < A3|x |

· · ·

∀m ≥ 2, (1 + ε)m−1ρ(A)m|x | < Am|x |
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Positive matrices: Perron’s theorem

Proof.

We deduce that for the matrix norm induced by the sup-norm on Rn:

∀m ≥ 2, ‖Am‖ ≥ (1 + ε)m−1ρ(A)m

Using Gelfand’s formula we obtain ρ(A) ≥ (1 + ε)ρ(A)... a contradiction.

We conclude

ρ(A)|x | = A|x |

and

|x | ≥ 0 =⇒ ρ(A)|x | = A|x | > 0 =⇒ |x | > 0.

Now, if x̃ is another eigenvector for the eigenvalue ρ(A), we have, as

before, that |x̃ | is also an eigenvector for the eigenvalue ρ(A), and

ρ(A)|x̃ | = |Ax̃ | ≤ A|x̃ | = ρ(A)|x̃ |

So we have an equality case in the triangular inequality |Ax̃ | ≤ A|x̃ |.
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Positive matrices: Perron’s theorem

Proof.

The first coordinate gives that arg(A1j x̃j) is independent of j . As A > 0,

we have x̃ = e iθ|x̃ |.

Now, let us consider c = min|x̃i |6=0 |xi |/|x̃i |.
If |x | 6= c |x̃ |, then

|x | ≥ c |x̃ | =⇒ ρ(A)|x | = A|x | > cA|x̃ | = cρ(A)|x̃ | =⇒ |x | > c |x̃ |

which contradicts the definition of c .

We conclude that |x | = c |x̃ | = ce−iθ x̃ , i.e. the eigenspace associated

with ρ(A) is of dimension 1.
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|x | ≥ c |x̃ | =⇒ ρ(A)|x | = A|x | > cA|x̃ | = cρ(A)|x̃ | =⇒ |x | > c |x̃ |

which contradicts the definition of c .

We conclude that |x | = c |x̃ | = ce−iθ x̃ , i.e. the eigenspace associated
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Positive matrices: Perron’s theorem

Proof.

Applying the above reasoning to both A and A′, we exhibit two positive

vectors u and v such that

Au = ρ(A)u and A′v = ρ(A)v .

u′v > 0 so Rn = span(u)⊕ span(v)⊥. Since span(v)⊥ is stable by A,

there exists P ∈ GLn(R) such that

PAP−1 =

(
ρ(A) 0

0 Ã

)

As the eigenspace of A associated with ρ(A) is of dimension 1, ρ(A)

cannot be an eigenvalue Ã.

We conclude that ρ(A) has algebraic multiplicity 1.
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)

As the eigenspace of A associated with ρ(A) is of dimension 1, ρ(A)

cannot be an eigenvalue Ã.
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A first extension to nonnegative matrices

A natural question is “what can be generalized to nonnegative

matrices?”.

A first result is the following:

Proposition

Let A ∈ Mn(R) be a nonnegative matrix.

Then ρ(A) is an eigenvalue of A and there exists a nonnegative

eigenvector associated with ρ(A).
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A first extension to nonnegative matrices

Proof.

We define Ap = A + 1
p J where J is a matrix with all entries equal to 1.

By Perron’s theorem, there exists for each p ≥ 1, a positive vector xp
such that

Apxp = ρ(Ap)xp ‖xp‖ = 1

We can extract a subsequence xp′ → x with x ≥ 0 and ‖x‖ = 1.

Because A ≤ Ap ≤ Aq for p ≥ q, the sequence (ρ(Ap′))p′ is

nonincreasing and converges towards ρ ≥ ρ(A).

We obtain

Ax = ρx ‖x‖ = 1 x ≥ 0

As ρ ≥ ρ(A) is an eigenvalue, we have ρ = ρ(A).
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A song of matrices and graphs

In order to generalize other results, we need an additional assumption:

irreducibility.

Let us start with a few definitions:

Definition

For A ∈ Mn(C) we denote by M(A) the matrix with entries (1aij 6=0)ij .

Definition

For A ∈ Mn(C) we define Γ(A) the directed graph with adjacency matrix

M(A)

We shall relate properties of A with properties of Γ(A).
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A song of matrices and graphs

Lemma

For A ∈ Mn(C), m ∈ N, and 1 ≤ i , j ≤ n, the three following statements

are equivalent:

• (|A|m)ij > 0

• (M(A)m)ij > 0

• there exists a path a length m from i to j in the graph Γ(A).

Proof.

(|A|m)ij =
∑

k1=i,k2,...,km−1,km=j

|ak1k2 | · · · |akm−1km |

So (|A|m)ij > 0 if and only if there exist k1 = i , k2, . . . , km−1, km = j such

that |ak1k2 |, . . . , |akm−1km | 6= 0, i.e. if and only if there exists a path a

length m from i to j in the graph Γ(A).

To complete the proof, simply notice that Γ(A) = Γ(M(A)).
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A song of matrices and graphs

Proposition

For A ∈ Mn(C) the three following statements are equivalent:

• (In + |A|)n−1 > 0

• (In + M(A))n−1 > 0

• The graph Γ(A) is connected.

Proof.

(In + |A|)n−1 =
n−1∑
m=0

Cm
n−1|A|m

So the diagonal entries of (In + |A|)n−1 are positive and the off-diagonal

are positive if and only if for all 1 ≤ i 6= j ≤ n, there exists

m ∈ {1, . . . , n − 1} such that (|A|m)ij > 0.
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A song of matrices and graphs

Proof.

Using the above lemma, we have (In + |A|)n−1 > 0 if and only if any two

distinct nodes of Γ(A) are linked by a path of length at most equal to

n − 1.

As the graph has n nodes, (In + |A|)n−1 > 0 is equivalent to Γ(A)

connected.

To complete the proof, simply notice that Γ(A) = Γ(M(A)).

The matrices verifying any of the three above assumptions are called

irreducible.

Remark: This name comes from another characterization with the

impossibility to permute lines/columns to obtain a block-triangular

matrix (but we shall not use that in what follows).
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Nonnegative and irreducible matrices: Perron-Frobenius theo-

rem

A fundamental theorem for nonnegative and irreducible matrices is

Perron-Frobenius theorem stating that Perron’s theorem generalizes to

these matrices:

Theorem (Perron-Frobenius theorem)

Let A ∈ Mn(R) be a nonnegative and irreducible matrix. We have the

following:

• ρ(A) > 0

• ρ(A) is an eigenvalue of A

• the associated eigenspace is of dimension 1 and spanned by a

positive vector.

• the algebraic multiplicity of ρ(A) is 1.
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Let A ∈ Mn(R) be a nonnegative and irreducible matrix. We have the

following:

• ρ(A) > 0

• ρ(A) is an eigenvalue of A

• the associated eigenspace is of dimension 1 and spanned by a

positive vector.

• the algebraic multiplicity of ρ(A) is 1.
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Nonnegative and irreducible matrices: Perron-Frobenius theo-

rem

Proof.

ρ(A) = 0 =⇒ A nilpotent =⇒ ∃m,Am = |A|m = 0.

However, because Γ(A) is connected, there exist paths of any length in

the graph, so ρ(A) > 0.

The second point of the theorem does not require irreducibility (see

above). Let x ≥ 0 be such that Ax = ρ(A)x . Then

(I + |A|)n−1x = (I + A)n−1x = (1 + ρ(A))n−1x

But

ρ((I + |A|)n−1) = ρ(I + |A|)n−1 = ρ(I + A)n−1 ≤ (1 + ρ(A))n−1.

So x is in fact an eigenvalue of (I + |A|)n−1 corresponding to its spectral

radius.
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Nonnegative and irreducible matrices: Perron-Frobenius theo-

rem

Proof.

By Perron’s theorem, x > 0 and the eigenspace of A corresponding to

ρ(A) is of dimension 1.

Because A irreducible implies A′ irreducible, we can apply the above

results to A′ and conclude for the fourth point as in the proof of Perron’s

theorem.

Remark: With positive matrices, ρ(A) is the unique eigenvalue with

modulus equal to ρ(A). This is not anymore true for nonnegative

matrices. However we can prove that, if there are several such

eigenvalues in the nonnegative and irreducible case, they form a polygon

inside the circle of radius ρ(A) in the complex plane.
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Entropic costs: spectral characterization of

the ergodic constant

112



Towards asymptotic results

Let us recall that the value function and the optimal controls depend on

wT : t ∈ [0,T ] 7→ wT (t) = eB(T−t)g

where

g = (eg(1), . . . , eg(N))′

and

Bij =


e−1−bij , if j ∈ V(i),

h(i), if j = i ,

0, otherwise.

We now study the spectrum and deduce the asymptotic behavior of the

value function and the optimal controls.
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The spectrum of B and asymptotic results

Theorem

SpR(B) is a nonempty set and γ = max SpR(B) is an algebraically simple

eigenvalue whose associated eigenspace is spanned by a positive vector f .

Moreover ∀λ ∈ Sp(B) \ {γ},Re(λ) < γ.

γ is the ergodic constant associated with our control problem and

∃α ∈ R,∀i ∈ I,∀t ∈ R, lim
T→+∞

uTi (t)− γ(T − t) = α + log(fi ).

Moreover, the asymptotic behavior of the optimal controls is given by

∀i ∈ I,∀j ∈ V(i),∀t ∈ R, lim
T→+∞

λ∗t (i , j) = e−1−bij fj
fi
.
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Spectrum of B and asymptotic results

Proof.

Let us consider σ = −mini∈I h(i) and denote by B(σ) the nonnegative

matrix B + σIN .

Γ(B(σ)) is the connected graph of our problem to which self-loops may

have been added: it is connected and therefore B(σ) is irreducible.

By Perron-Frobenius theorem, ρ(B(σ)) is an algebraically simple

eigenvalue of B(σ) and the associated eigenspace is spanned by a

positive vector f .

Shifting the spectrum by −σ we see that SpR(B) is a nonempty set and

its maximum γ, equal to ρ(B(σ))− σ, is an algebraically simple

eigenvalue of B whose associated eigenspace is spanned by f .

Moreover ∀λ ∈ Sp(B) \ {γ},Re(λ) < γ.
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Spectrum of B and asymptotic results

Proof.

Now, ρ(B(σ)) is also an algebraically simple eigenvalue of B(σ)′ and the

associated eigenspace is spanned by a positive vector φ.

Using a Jordan decomposition of B(σ), we see that g can be written as

βf + ψ where β ∈ R and

ψ ∈ Im(B(σ)− ρ(B(σ))IN) = Ker(B(σ)′ − ρ(B(σ))IN)⊥ = span(φ)⊥.

As ψ = g− βf ⊥ φ and all coefficients of g, f , and φ are positive, we

must have β > 0.
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Spectrum of B and asymptotic results

Proof.

Now,
e−γ(T−t)wT (t) = e(B−γIN )(T−t)g

= e(B−γIN )(T−t)βf + e(B−γIN )(T−t)ψ

= βf + e(B−γIN )(T−t)ψ →T→+∞ βf .

By taking logarithms, we obtain that

∀i ∈ I, lim
T→+∞

uTi (t)− γ(T − t) = log(β) + log(fi ).

For optimal controls, we obtain ∀i ∈ I,∀j ∈ V(i),∀t ∈ [0,T ],

λ∗t (i , j) = e−1−bij
wT
j (t)

wT
i (t)

= e−1−bij
e−γ(T−t)wT

j (t)

e−γ(T−t)wT
i (t)

→T→+∞ e−1−bij fj
fi
.
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Conclusions about optimal controls on graphs

What we have seen

• We have provided, under simple assumptions, a way to characterize

optimal controls (with ODEs).

• We have generalized the results to the case of infinite horizon

problems when r > 0 (stationary problems).

• We have obtained a (difficult) result on the asymptotic behavior far

from T when r = 0.

• We have shown in the case of entropic costs that value functions

and optimal controls could be found in closed-form

• We have shown in the case of entropic costs that the ergodic

constant is the largest real eigenvalue of a simple matrix and that

optimal controls are characterized by the coordinates of an associate

eigenvector.

We now apply our results to market making and to the

Avellaneda-Stoikov equation.

118



Conclusions about optimal controls on graphs

What we have seen

• We have provided, under simple assumptions, a way to characterize

optimal controls (with ODEs).

• We have generalized the results to the case of infinite horizon

problems when r > 0 (stationary problems).

• We have obtained a (difficult) result on the asymptotic behavior far

from T when r = 0.

• We have shown in the case of entropic costs that value functions

and optimal controls could be found in closed-form

• We have shown in the case of entropic costs that the ergodic

constant is the largest real eigenvalue of a simple matrix and that

optimal controls are characterized by the coordinates of an associate

eigenvector.

We now apply our results to market making and to the

Avellaneda-Stoikov equation.

118



Conclusions about optimal controls on graphs

What we have seen

• We have provided, under simple assumptions, a way to characterize

optimal controls (with ODEs).

• We have generalized the results to the case of infinite horizon

problems when r > 0 (stationary problems).

• We have obtained a (difficult) result on the asymptotic behavior far

from T when r = 0.

• We have shown in the case of entropic costs that value functions

and optimal controls could be found in closed-form

• We have shown in the case of entropic costs that the ergodic

constant is the largest real eigenvalue of a simple matrix and that

optimal controls are characterized by the coordinates of an associate

eigenvector.

We now apply our results to market making and to the

Avellaneda-Stoikov equation.

118



Conclusions about optimal controls on graphs

What we have seen

• We have provided, under simple assumptions, a way to characterize

optimal controls (with ODEs).

• We have generalized the results to the case of infinite horizon

problems when r > 0 (stationary problems).

• We have obtained a (difficult) result on the asymptotic behavior far

from T when r = 0.

• We have shown in the case of entropic costs that value functions

and optimal controls could be found in closed-form

• We have shown in the case of entropic costs that the ergodic

constant is the largest real eigenvalue of a simple matrix and that

optimal controls are characterized by the coordinates of an associate

eigenvector.

We now apply our results to market making and to the

Avellaneda-Stoikov equation.

118



Conclusions about optimal controls on graphs

What we have seen

• We have provided, under simple assumptions, a way to characterize

optimal controls (with ODEs).

• We have generalized the results to the case of infinite horizon

problems when r > 0 (stationary problems).

• We have obtained a (difficult) result on the asymptotic behavior far

from T when r = 0.

• We have shown in the case of entropic costs that value functions

and optimal controls could be found in closed-form

• We have shown in the case of entropic costs that the ergodic

constant is the largest real eigenvalue of a simple matrix and that

optimal controls are characterized by the coordinates of an associate

eigenvector.

We now apply our results to market making and to the

Avellaneda-Stoikov equation.

118



Conclusions about optimal controls on graphs

What we have seen

• We have provided, under simple assumptions, a way to characterize

optimal controls (with ODEs).

• We have generalized the results to the case of infinite horizon

problems when r > 0 (stationary problems).

• We have obtained a (difficult) result on the asymptotic behavior far

from T when r = 0.

• We have shown in the case of entropic costs that value functions

and optimal controls could be found in closed-form

• We have shown in the case of entropic costs that the ergodic

constant is the largest real eigenvalue of a simple matrix and that

optimal controls are characterized by the coordinates of an associate

eigenvector.

We now apply our results to market making and to the

Avellaneda-Stoikov equation.

118



Conclusions about optimal controls on graphs

What we have seen

• We have provided, under simple assumptions, a way to characterize

optimal controls (with ODEs).

• We have generalized the results to the case of infinite horizon

problems when r > 0 (stationary problems).

• We have obtained a (difficult) result on the asymptotic behavior far

from T when r = 0.

• We have shown in the case of entropic costs that value functions

and optimal controls could be found in closed-form

• We have shown in the case of entropic costs that the ergodic

constant is the largest real eigenvalue of a simple matrix and that

optimal controls are characterized by the coordinates of an associate

eigenvector.

We now apply our results to market making and to the

Avellaneda-Stoikov equation.

118



Conclusions about optimal controls on graphs

What we have seen

• We have provided, under simple assumptions, a way to characterize

optimal controls (with ODEs).

• We have generalized the results to the case of infinite horizon

problems when r > 0 (stationary problems).

• We have obtained a (difficult) result on the asymptotic behavior far

from T when r = 0.

• We have shown in the case of entropic costs that value functions

and optimal controls could be found in closed-form

• We have shown in the case of entropic costs that the ergodic

constant is the largest real eigenvalue of a simple matrix and that

optimal controls are characterized by the coordinates of an associate

eigenvector.

We now apply our results to market making and to the

Avellaneda-Stoikov equation. 118



An application to market making
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Nature of the problem

A problem coming from the financial industry

• Not a pricing issue.

• Not a hedging issue.

• Not a problem of portfolio choice.

• Optimization problem relevant on many markets: market making.

What is a market maker?

• Liquidity provider: provide bid and ask/offer prices to other market

participants

• Today, replaced by algorithms.
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Setup of models à la Avellaneda-Stoikov

• Reference price process (mid-price) (St)t :

dSt = σdWt .

• Bid and ask prices of the MM denoted respectively

Sb
t = St − δbt and Sa

t = St + δat .

• Point processes Nb and Na for the transactions (size ∆). Inventory

(qt)t :

dqt = ∆dNb
t −∆dNa

t .
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Setup of models à la Avellaneda-Stoikov

• The intensities of Nb and Na depend on the distance to the

reference price:

λbt = Λb(δbt )1qt−<Q and λat = Λa(δat )1qt−>−Q .

Λb, Λa decreasing.

• Cash process (Xt)t :

dXt = ∆Sa
t dN

a
t −∆Sb

t dN
b
t = −Stdqt + δat ∆dNa

t + δbt ∆dNb
t .

Three state variables: X (cash), q (inventory), and S (price).
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Several objective functions

Näıve: Risk-neutral

sup
(δat )t ,(δbt )t∈A

E [XT + qTST ] .

The original Avellaneda-Stoikov’s model considers a CARA utility

function:

CARA objective function (Model A)

sup
(δat )t ,(δbt )t∈A

E [− exp (−γ(XT + qTST ))] ,

where γ is the absolute risk aversion parameter, and A the set of

predictable processes bounded from below.
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Several objective functions

Models à la Cartea, Jaimungal et al. with a running penalty for the

inventory:

Risk-neutral with running penalty (Model B)

sup
(δat )t ,(δbt )t∈A

E

[
XT + qTST −

γ

2
σ2

∫ T

0

q2
t dt

]
,

where γ is a kind of absolute risk aversion parameter.
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Several objective functions

Models à la Cartea, Jaimungal et al. with a running penalty for the

inventory:

Risk-neutral with running penalty (Model B)

sup
(δat )t ,(δbt )t∈A

E

[
XT + qTST −

γ

2
σ2
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0

q2
t dt

]
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HJB equation (Model A)

In what follows, u is a candidate for the value function.

Hamilton-Jacobi-Bellman

(HJB) 0 = ∂tu(t, x , q,S) +
1

2
σ2∂2

SSu(t, x , q,S)

+1q<Q sup
δb

Λb(δb)
[
u(t, x −∆S + ∆δb, q + ∆,S)− u(t, x , q,S)

]
+1q>−Q sup

δa
Λa(δa) [u(t, x + ∆S + ∆δa, q −∆,S)− u(t, x , q,S)]

with final condition:

u(T , x , q,S) = − exp (−γ(x + qS))
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Change of variables (Model A)

Ansatz

u(t, x , q,S) = − exp(−γ(x + qS + θ(t, q)))

New equation (Model A)

0 = ∂tθ(t, q)− 1

2
γσ2q2

+1q<Q sup
δb

Λb(δb)

γ

(
1− exp

(
−γ
(
∆δb + θ(t, q + ∆)− θ(t, q)

)))
+1q>−Q sup

δa

Λa(δa)

γ
(1− exp (−γ (∆δa + θ(t, q −∆)− θ(t, q))))

with final condition θ(T , q) = 0.
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Equation for θ (Model A)

A new transform

Hb
ξ (p) = sup

δ

Λb(δ)

ξ
(1− exp (−ξ∆ (δ − p)))

Ha
ξ (p) = sup

δ

Λa(δ)

ξ
(1− exp (−ξ∆ (δ − p)))

New equation (Model A)

0 = ∂tθ(t, q)− 1

2
γσ2q2 + 1q<QH

b
γ

(
θ(t, q)− θ(t, q + ∆)

∆

)
+1q>−QH

a
γ

(
θ(t, q)− θ(t, q −∆)

∆

)
with final condition θ(T , q) = 0.
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HJB equation (Model B)

Hamilton-Jacobi-Bellman

(HJB) 0 = ∂tu(t, x , q,S)− 1

2
γσ2q2 +

1

2
σ2∂2

SSu(t, x , q,S)

+1q<Q sup
δb

Λb(δb)
[
u(t, x −∆S + ∆δb, q + ∆,S)− u(t, x , q,S)

]
+1q>−Q sup

δa
Λa(δa) [u(t, x + ∆S + ∆δa, q −∆,S)− u(t, x , q,S)]

with final condition:

u(T , x , q,S) = x + qS
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Change of variables (Model B)

Ansatz

u(T , x , q,S) = x + qS + θ(t, q)

New equation (Model B)

0 = ∂tθ(t, q)− 1

2
γσ2q2

+1q<Q sup
δb

Λb(δb)
[
∆δb + θ(t, q + ∆)− θ(t, q)

]
+1q>−Q sup

δa
Λa(δa) [∆δa + θ(t, q −∆)− θ(t, q)]

with final condition θ(T , q) = 0.
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Equation for θ (Model B)

A new transform

Hb
0 (p) = ∆ sup

δ
Λb(δ)(δ − p)

Ha
0 (p) = ∆ sup

δ
Λa(δ)(δ − p)

New equation (Model B)

0 = ∂tθ(t, q)− 1

2
γσ2q2 + 1q<QH

b
0

(
θ(t, q)− θ(t, q + ∆)

∆

)
+1q>−QH

a
0

(
θ(t, q)− θ(t, q −∆)

∆

)
with final condition θ(T , q) = 0.
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A unique family of equations

Uniting two objective functions

• Same family of equations for θ in both models.

• A system of 2Q/∆ + 1 non-linear ODEs.

• In both cases: problem in dimension 2 instead of 4.

0 = ∂tθ(t, q)− 1

2
γσ2q2 + 1q<QH

b
ξ

(
θ(t, q)− θ(t, q + ∆)

∆

)
+1q>−QH

a
ξ

(
θ(t, q)− θ(t, q −∆)

∆

)
with final condition θ(T , q) = 0.

Same equations as those studied earlier (written in a slightly different

manner)
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The intensity functions Λb and Λa

Assumptions on Λb and Λa.

1. Λb/a is C 2.

2. Λb/a′ < 0.

3. limδ→+∞ Λb/a(δ) = 0.

4. The intensity functions Λb/a satisfy:

sup
δ

Λb/a(δ)Λb/a′′(δ)(
Λb/a′(δ)

)2 < 2.

Exponential intensity

In Avellaneda and Stoikov (∆ = 1):

Λb(δ) = Λa(δ) = Ae−kδ.
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The functions Hb
ξ and Ha

ξ

Proposition

• ∀ξ ≥ 0, H
b/a
ξ is a decreasing function of class C 2.

• In the definition of H
b/a
ξ (p), the supremum is attained at a unique

δ̃
b/a∗
ξ (p) characterized by

δ̃
b/a∗
ξ (p) = Λb/a−1

ξHb/a
ξ (p)−

H
b/a
ξ

′
(p)

∆

 .

• The function p 7→ δ̃
b/a∗
ξ (p) is increasing.

Remark: H
b/a
ξ decreasing corresponds to increasing Hamiltonian

functions in our optimal control theory on graphs.
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Existence and uniqueness

Results for θ

There exists a unique C 1 (in time) solution t 7→ (θ(t, q))|q|≤Q to

0 = ∂tθ(t, q)− 1

2
γσ2q2 + 1q<QH

b
ξ

(
θ(t, q)− θ(t, q + ∆)

∆

)

+1q>−QH
a
ξ

(
θ(t, q)− θ(t, q −∆)

∆

)
with final condition θ(T , q) = 0.
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Solution of the initial problems (verification argument)

By using a verification argument, the functions u are the value functions

associated with the problems of Model A and Model B.

Optimal quotes

The optimal quotes in models A (ξ = γ) and B (ξ = 0) are:

δb∗t = δ̃b∗ξ

(
θ(t, qt−)− θ(t, qt− + ∆)

∆

)

δa∗t = δ̃a∗ξ

(
θ(t, qt−)− θ(t, qt− −∆)

∆

)
where

δ̃
b/a∗
ξ (p) = Λb/a−1

ξHb/a
ξ (p)−

H
b/a
ξ

′
(p)

∆

 .
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The case Λb(δ) = Λa(δ) = Ae−kδ

The functions H
b/a
ξ and δ̃

b/a∗
ξ

If Λb(δ) = Λa(δ) = Ae−kδ, then H
b/a
ξ (p) = A∆

k Cξ exp(−kp), with

Cξ =


(

1 + ξ∆
k

)− k
ξ∆−1

if ξ > 0

e−1 if ξ = 0.

and

δ̃
b/a∗
ξ (p) =

p + 1
ξ∆ log

(
1 + ξ∆

k

)
if ξ > 0

p + 1
k if ξ = 0,

This corresponds exactly to our framework with entropic costs
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The case Λb(δ) = Λa(δ) = Ae−kδ

The system of ODEs

0 = ∂tθ(t, q)− 1

2
γσ2q2+

+
A∆

k
Cξ
(

1q<Qe
k θ(t,q+∆)−θ(t,q)

∆ + 1q>−Qe
k θ(t,q−∆)−θ(t,q)

∆

)
,

with final condition θ(T , q) = 0.

Change of variables: vq(t) = exp
(

kθ(t,q)
∆

)
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The case Λb(δ) = Λa(δ) = Ae−kδ

A linear system of ODEs

v ′q(t) = αq2vq(t)− ηξ (1q<Qvq+∆(t) + 1q>−Qvq−∆(t)) ,

with

α =
k

2∆
γσ2, ηξ = ACξ

and the terminal condition v(T , q) = 1.

This corresponds to

B =



−αQ2 ηξ
ηξ −α(Q −∆)2 ηξ

ηξ
. . .

. . .

. . .
. . . ηξ
ηξ −αQ2


which is symmetric here!
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The case Λb(δ) = Λa(δ) = Ae−kδ

Optimal quotes

The optimal quotes in models A (ξ = γ) and B (ξ = 0) are:

δb∗t = δb∗(t, qt−) := Dξ +
1

k
ln

(
vqt−(t)

vqt−+∆(t)

)
δa∗t = δa∗(t, qt−) := Dξ +

1

k
ln

(
vqt−(t)

vqt−−∆(t)

)

Dξ =


1
ξ∆ log

(
1 + ξ∆

k

)
if ξ > 0

1
k if ξ = 0,
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The case Λb(δ) = Λa(δ) = Ae−kδ

The optimal quote functions far from T only depend on q:

Asymptotics

δb∗∞(q) = lim
T→∞

δb∗(0, q) = Dξ +
1

k
ln

(
f 0
q

f 0
q+∆

)

δa∗∞(q) = lim
T→∞

δa∗(0, q) = Dξ +
1

k
ln

(
f 0
q

f 0
q−∆

)

Because B is symmetric, f 0 ∈ R2Q/∆+1 is characterized by a Rayleigh

ratio:

argmin
‖f ‖2=1

∑
|q|≤Q

αq2f 2
q + ηξ

 Q−∆∑
q=−Q

(fq+∆ − fq)2 + (fQ)2 + (f−Q)2

 .
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The case Λb(δ) = Λa(δ) = Ae−kδ

Continuous counterpart

f̃ 0 ∈ L2(R) characterized by:

argmin
‖f̃ ‖L2(R)=1

∫ ∞
−∞

(
αx2 f̃ (x)2 + ηξ∆2 f̃ ′(x)2

)
dx .

f̃ 0(x) ∝ exp

(
− 1

2∆

√
α
ηξ
x2

)

Hence, we get an approximation of the form:

f 0
q ∝ exp

(
− 1

2∆

√
α
ηξ
q2

)
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The case Λb(δ) = Λa(δ) = Ae−kδ

Using the continuous counterpart, we get:

Closed-form approximations: optimal quotes (Model A: ξ = γ)

δb∗∞(q) ' 1

∆ξ
ln

(
1 +

∆ξ

k

)
+

2q + ∆

2

√
γσ2

2kA∆

(
1 +

∆ξ

k

)1+ k
∆ξ

δa∗∞(q) ' 1

∆ξ
ln

(
1 +

∆ξ

k

)
− 2q −∆

2

√
γσ2

2kA∆

(
1 +

∆ξ

k

)1+ k
∆ξ

Remark: these formulas are used by many practitioners in Europe and

Asia on quote-driven markets.
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The case Λb(δ) = Λa(δ) = Ae−kδ

Using the continuous counterpart, we get:

Closed-form approximations: optimal quotes (Model B: ξ = 0)

δb∗∞(q) ' 1

k
+

2q + ∆

2

√
γσ2e

2kA∆

δa∗∞(q) ' 1

k
− 2q −∆

2

√
γσ2e

2kA∆
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The case Λb(δ) = Λa(δ) = Ae−kδ

Using the continuous counterpart, we get:

Closed-form approximations: optimal quotes (Model B: ξ = 0)

δb∗∞(q) ' 1

k
+

2q + ∆

2

√
γσ2e

2kA∆

δa∗∞(q) ' 1

k
− 2q −∆

2

√
γσ2e

2kA∆
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The case Λb(δ) = Λa(δ) = Ae−kδ

A good way to analyze the result is to consider the spread ψ = δb + δa

and the skew ζ = δb − δa.

Closed-form approx.: spread and skew (Model A, ξ = γ)

ψ∗∞(q) ' 2

∆ξ
ln

(
1 +

∆ξ

k

)
+ ∆

√
γσ2

2kA∆

(
1 +

∆ξ

k

)1+ k
∆ξ

ζ∗∞(q) ' 2q

√
γσ2

2kA∆

(
1 +

∆ξ

k

)1+ k
∆ξ
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The case Λb(δ) = Λa(δ) = Ae−kδ

Closed form approx.: spread and skew (Model B, ξ = 0)

ψ∗∞(q) ' 2

k
+ ∆

√
γσ2e

2kA∆

ζ∗∞(q) ' 2q

√
γσ2e

2kA∆
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The case Λb(δ) = Λa(δ) = Ae−kδ

Closed form approx.: spread and skew (Model B, ξ = 0)

ψ∗∞(q) ' 2

k
+ ∆

√
γσ2e

2kA∆

ζ∗∞(q) ' 2q

√
γσ2e

2kA∆

145



If you want to know more about market making
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Questions

Thanks for your attention.

Questions.
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