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Abstract

One critical issue in the control of Markov processes is that, in order to
successfully apply dynamic programming tools, the knowledge of the statistical
laws governing the system is required. Sometimes, when these laws are di�cult
to estimate beforehand using historical data, the estimation/calibration task
needs to be performed at runtime (this is known as online learning). Bayesian
inference provides a useful way to address this problem by de�ning probability
distributions for the model parameters and update them with the incoming
information. It is particularly relevant in the case of most conjugate Bayesian
priors as their use preserves the Markovian properties of the model, making it
possible therefore to apply classical dynamic programming / stochastic optimal
control tools. In this paper, we apply such a Bayesian approach for the control
of a bidding algorithm participating in a high-frequency stream of (Vickrey)
auctions. This is of particular interest in real-time bidding (RTB) advertising.

Keywords: Stochastic optimal control, Online learning, Exploration-Exploitation,
Real-Time Bidding (RTB), Hamilton-Jacobi-Bellman (HJB) equations, Bayesian
inference.

1 Introduction

The theory of Markov decision processes (MDPs) � and/or its continuous-time coun-
terpart: stochastic optimal control theory � provides an appealing framework for the
design of algorithms (i) acting on a system through a sequence of decisions whose
immediate outcome is subject to randomness, and (ii) aiming at optimizing an ex-
pected payo� (depending on future states of the system). In situations where the
randomness governing the system is described by statistical laws which are known
to the controller, it is often possible to exactly characterize the optimal strategy by
applying tools such as the dynamic programming principle (Bellman equations). One
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of the main limitations of the aforementioned framework is the need to model (and
estimate thereafter) the randomness. If the randomness is not exactly modeled or if
the model parameters are di�cult/impossible to estimate, the Bellman equation is
not well de�ned and, from a computational perspective, the problem does not boil
down, a priori, to the numerical approximation of the solution of a recursive system
of equations (the Bellman equation) by backward induction.

Many approaches have been proposed in order to address optimization and con-
trol problems in an uncertain environment. Robust control theory is an important
example. Reinforcement learning is another. When the algorithm can be played on
similar data sets, reinforcement learning techniques such as Q-learning or SARSA
can be used to learn the optimal policy. However, if the dataset of interest can only
be played once, the problem is an exploration-exploitation one which requires to
learn the environment at runtime (i.e., online learning). When the optimal strategy
does not depend on the state of the algorithm, bandit algorithms can often be used.
However, in the more general MDP case the situation is more complex and a di�erent
treatment is needed.

A real-life instance where this kind of problems arises is in the area of digital
media buying, more exactly the design of optimal real-time bidding strategies. In a
nutshell, an important part of the global digital advertising inventory is purchased
nowadays through auctions: each time a web page (on which an ad slot is available)
is loaded, an ad exchange proposes this ad slot to potential buyers � sometimes
through Demand-Side Platforms (DSPs). Buyers then have a lapse of a few millisec-
onds to bid a price. Millions of such auction processes are launched every day to sell
ad inventory. Therefore, media buying agencies and ad trading companies providing
ad-buying services to �rms have to solve a complex control problem for de�ning how
to bid on each auction in order to optimize one or several key performance indicators
(KPIs).1

Several digital media buying problems have been addressed in the academic lit-
erature � see bibliography. In this paper, we consider Bayesian extensions of the
models presented in the companion papers [7, 8]. We consider a trading desk re-
ceiving auction requests from J di�erent sources. These sources may correspond
to di�erent ad exchanges and/or di�erent segments (usually cookie segments). For
each auction request, the algorithm bids a price and the inventory is purchased by
the algorithm if and only if the bid sent is greater than the price to beat (i.e., the
best price proposed by the other participants in the auction). If the inventory is
purchased by the algorithm, then there may be or may not be a conversion � a con-
version corresponds, depending on the context, either to a click, or to a purchase,
or to a subscription, or to the internet user reaching a speci�c page. The goal of
the ad trading desk is either to maximize the expected value of a KPI (e.g., the
number of conversions) for a given level of spending, or � it is the dual problem � to
minimizing the expected amount of cash spent subject to the constraint of reaching

1KPIs are usually functions of macroscopic parameters such as the total budget, the inventory
purchased, the number of conversions obtained (a conversion can be a click, a purchase, a subscrip-
tion, the internet user reaching a speci�c web page, etc.).
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a minimum level of a given KPI. However, the trading desk may not know all the
parameters of the model. For instance, the intensity of arrival of requests from the
di�erent sources may not be known. Similarly, the distribution of the price to beat
for each of the sources may not be known. More importantly if we consider a KPI
linked to the number of conversions, the conversion rate of each of the J sources
may be unknown. In spite of the numerous uncertainties, the Bayesian and control
framework we propose enables to address the problem faced by the trading desk in
a Markovian way.

In Section 2, we present the modelling framework without uncertainty. In Sec-
tion 3, we consider one of the most important uncertainties: the value of the proba-
bility of conversion associated with each source. In Section 4, we address the learning
problem associated with the distribution of the price to beat for each source. We
assume that the price to beat for each source of auction requests follows an exponen-
tial distribution and we show that the use of conjugate priors (here Gamma priors)
allows to write the learning and control problems we consider in the form of an HJB
equation. In Section 5, we focus on the uncertainty associated with the number of
auction requests coming from each source. In each section, we consider both the
primal problem and the dual problem.

2 The basic modelling framework without learning

2.1 Setup and notations

Let us �x a probability space (Ω,F ,P) equipped with a �ltration (Ft)t∈R+ satisfy-
ing the usual conditions. We assume that all stochastic processes are de�ned on
(Ω,F , (Ft)t∈R+ ,P).

We consider a time horizon T > 0 and an ad trader (or an ad trading desk)
buying ad inventory over a time window [0, T ] for a given campaign.

The ad trader receives auction requests at random times from a set of J sources.
The J types of auction requests can di�er in the actual ad exchange sending the auc-
tion request or in the type of population targeted (through the use of cookie segments
for instance). The auction requests arising from the J sources are modeled with J
marked Poisson processes (N1, . . . , NJ). The arrival of a new auction request from
the source j ∈ {1, . . . , J} is triggered by the jump of the Poisson process N j . The
intensity associated with N j is denoted by λj . As far as the marks are concerned,
we denote by pjn and ξjn, respectively the highest bid sent by the other participants
during the nth auction coming from source j (i.e., the price to beat), and the occur-
rence (ξjn ∈ {0, 1}) of a conversion � the latter matters only in the case where the
auction has been won by the ad trader.

At time t, if an ad trader receives an auction request from the source j, then we
denote his bid by bjt . If this request turns out to be the nth auction associated with
the source j, then the outcome of the auction is the following:

• If bjt > pjn, then the ad trader wins the auction: he pays the price pjn and his
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ad is displayed. Moreover, a conversion occurs if and only if ξjn = 1.

• If bjt ≤ p
j
n, then another trader wins the auction.

We assume that for each j ∈ {1, . . . , J}, (pjn)n∈N∗ are i.i.d. random variables
distributed according to an exponential distribution with parameter µj . We also
assume that the random variables (pjn)j∈{1,...,J},n∈N∗ are all independent.

As far as the variables (ξjn)j∈{1,...,J},n∈N∗ are concerned, we assume that they are

all independent and independent from the variables (pjn)j∈{1,...,J},n∈N∗ . Moreover, we

assume that for each j ∈ {1, . . . , J}, (ξjn)n∈N∗ are i.i.d. random variables distributed
according to a Bernoulli distribution with parameter νj ∈ [0, 1].

The amount of cash spent is denoted by (St)t. Its dynamics is the following:

dSt =
J∑
j=1

pj
Nj

t

1{bjt>p
j

N
j
t

}dN
j
t , S0 = 0.

For each j ∈ {1, . . . , J}, the number of impressions associated with the auction
requests coming for the source j is modeled by an inventory process (Ijt )t. For each
j ∈ {1, . . . , J}, the dynamics of (Ijt )t is:

dIjt = 1{bjt>p
j

N
j
t

}dN
j
t , Ij0 = 0.

For each j ∈ {1, . . . , J}, the number of conversions associated with the auction re-
quests coming for the source j is modeled by a process (Cjt )t. For each j ∈ {1, . . . , J},
the dynamics of (Cjt )t is:

dCjt = ξj
Nj

t

1{bjt>p
j

N
j
t

}dN
j
t , Cj0 = 0.

2.2 The primal problem: maximizing a KPI for a given level of

spending

In our framework, developed for the �rst time in [7], the goal of the ad trader was
to minimize an objective function of the form

E

− J∑
j=1

ζjIjT −
J∑
j=1

υjCjT +K min
(
S̄ − ST , 0

)2 ,
over (b1t , . . . , b

J
t )t ∈ AJ , where A is the set of predictable processes with values in

R+ ∪ {+∞}.

We can in fact consider a more general problem of the form

inf
(b1t ,...,b

J
t )t∈AJ

E
[
Φ(I1T , . . . , I

J
T , C

1
T , . . . , C

J
T ) +K min

(
S̄ − ST , 0

)2]
.

This objective function corresponds to a relaxed form of the problem consisting
in maximizing

E
[
−Φ(I1T , . . . , I

J
T , C

1
T , . . . , C

J
T )
]
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over the strategies (b1t , . . . , b
J
t )t ∈ AJ such that the total amount spent is S̄ (i.e.,

ST = S̄). The constant K in the relaxed problem is assumed to be large enough so
that ST never becomes too much greater than S̄.

The state of the bidding algorithm at any given time t is described by the vector
(It, Ct, St) which contains information about the number of ad slots already pur-
chased, the current number of conversions, and the amount already spent. The
problem is therefore characterized by a 4-variable (or in fact a function in dimen-
sion 2J + 2) value function

(t, I, C, S) 7→ u(t, I, C, S)

and the Hamilton-Jacobi-Bellman equation2

∂tu(t, I, C, S)+
J∑
j=1

λj inf
bj∈R+

∫ bj

0
µje−µ

jp
[
(1− νj)(u(t, I + ej , C, S + p)− u(t, I, C, S))

+νj(u(t, I + ej , C + ej , S + p)− u(t, I, C, S))
]
dp = 0, (1)

with terminal condition

u(T, I1, . . . , IJ , C1, . . . , CJ , S) = Φ(I1, . . . , IJ , C1, . . . , CJ) +K min
(
S̄ − S, 0

)2
.

Eq. (1) is a non-standard integro-di�erential HJB equation in dimension 2J + 2.
In the case of a linear form Φ, we have shown in [7] that the problem boils down to
a problem of dimension 2 through the use of the ansatz

u(t, I1, . . . , IJ , C1, . . . , CJ , S) = Φ(I1, . . . , IJ , C1, . . . , CJ) + v(t, S),

where v satis�es another integro-di�erential Hamilton-Jacobi-like equation. In the
case of a general function Φ, the ad trader faces, however, a high-dimensional prob-
lem.

The numerical problem we face in the case of the primal problem is a bit involved.
We can see Eq. (1) as a system (indexed by I and C) of integro-di�erential equations.
The solution can be approximated on a grid by backward induction, but it requires
to have enough computation capacity (in space and speed). It is noteworthy that,
in order to approximate numerically a solution of Eq. (1), it is interesting to modify
the equation by carrying out a �rst order expansion in S. In that case indeed, the
optimal bids can easily be written as functions of u and its gradient with respect to
S. In that case, the system of integro-di�erential equations is replaced by a system
of �rst-order PDEs.

2.3 The dual problem: minimizing the amount spent to reach KPI

thresholds

We developed in [8] a dual framework in which the goal of the ad trader is to minimize
an objective function of the form

E
[
ST + Φ(I1T , . . . , I

J
T , C

1
T , . . . , C

J
T )
]
,

2We denote by (e1, . . . , eJ) the canonical basis of RJ .
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over (b1t , . . . , b
J
t )t ∈ AJ , where A is the set of predictable processes with values in

R+ ∪ {+∞}, and where Φ is a penalty function, which is for instance of the form

Φ(i1, . . . , iJ , c1, . . . , cJ) = πI · (i1 + . . .+ iJ − I)− + πC · (c1 + . . .+ cJ − C)−,

where I and C are target levels respectively for the number of ad slots already pur-
chased and for the number of conversions.

This objective function corresponds to a relaxed form of the problem consist-
ing in minimizing the average amount spent E [ST ] over the bidding strategies
(b1t , . . . , b

J
t )t ∈ AJ , such that the total number of impressions (resp. conversions)

at time T is above I (resp. C).3

The state of the bidding algorithm at any given time t is described by the vector
(It, Ct, St) which contains information about the number of ad slots already pur-
chased, the current number of conversions, and the amount already spent. The
problem is therefore characterized by a 4-variable (or in fact a function in dimen-
sion 2J + 2) value function

(t, I, C, S) 7→ u(t, I, C, S)

and the Hamilton-Jacobi-Bellman equation

∂tu(t, I, C, S)+

J∑
j=1

λj inf
bj∈R+

∫ bj

0
µje−µ

jp
[
(1− νj)(u(t, I + ej , C, S + p)− u(t, I, C, S))

+νj(u(t, I + ej , C + ej , S + p)− u(t, I, C, S))
]
dp = 0, (2)

with terminal condition

u(T, I1, . . . , IJ , C1, . . . , CJ , S) = S + Φ(I1, . . . , IJ , C1, . . . , CJ).

Eq. (2) is a non-standard integro-di�erential HJB equation in dimension 2J + 2.
It can be simpli�ed by using the ansatz

u(t, I1, . . . , IJ , C1, . . . , CJ , S) = S + θ(t, I1, . . . , IJ , C1, . . . , CJ).

We have indeed that Eq. (2) then boils down to:

∂tθ(t, I, C) +

J∑
j=1

λj inf
bj∈R+

∫ bj

0
µje−µ

jp
[
p+ (1− νj)(θ(t, I + ej , C)− θ(t, I, C))

+νj(θ(t, I + ej , C + ej)− θ(t, I, C))
]
dp = 0, (3)

with terminal condition

θ(T, I1, . . . , IJ , C1, . . . , CJ) = Φ(I1, . . . , IJ , C1, . . . , CJ).

3The higher πI and πC , the harder the constraints on the KPI thresholds.
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It is noteworthy that the optimal bids can be computed as functions of θ by using
the �rst order condition in Eq. (3). We obtain indeed

bj∗I,C(t)

=
[
−((1− νj)(θ(t, I + ej , C)− θ(t, I, C)) + νj(θ(t, I + ej , C + ej)− θ(t, I, C)))

]
+

=
[
θ(t, I, C)− (νjθ(t, I + ej , C + ej) + (1− νj)θ(t, I + ej , C))

]
+
.

Moreover, by using an integration by parts, Eq. (3) can be written as

∂tθ(t, I, C)−
J∑
j=1

λj
∫ bj∗I,C(t)

0
(1− e−µjp)dp = 0,

or equivalently

∂tθ(t, I, C)−
J∑
j=1

λj
(
bj∗I,C(t)− 1

µj

(
1− e−µ

jbj∗I,C(t)
))

= 0, (4)

with terminal condition

θ(T, I1, . . . , IJ , C1, . . . , CJ) = Φ(I1, . . . , IJ , C1, . . . , CJ).

Eq. (4) is very interesting because it shows that, unlike what happens with the
primal problem, solving the dual problem boils down to solving a large but very
simple system of ODEs indexed by I and C. It requires computation capacity if the
number of sources J is large, but there is no mathematical di�culty!

2.4 Towards Bayesian learning

In order to write, and subsequently in order to approximate numerically the solution
of Eqs. (1) and (3) / (4), we need to know the value of 3J parameters. First, the
conversion rates (or probabilities) associated with the J di�erent sources of auction
requests are characterized by a set of J parameters: ν1, . . . , νJ . The exponential
distributions of the price to beat associated with the J sources of inventory are
also characterized by J parameters: µ1, . . . , µJ . Finally, the J Poisson processes
N1, . . . , NJ are characterized by J intensities λ1, . . . , λJ . These 3J parameters can
be estimated using past campaigns, but most of the time it would be worth updating
the estimates over the course of a campaign. For that purpose, we propose to mix
Bayesian learning and optimal control.

3 Online learning of conversion rates

3.1 Bayesian learning

In the previous framework, the J di�erent sources of auction requests are associated
with J probabilities of conversion: ν1, . . . , νJ . In practice, assuming that the value
of these probabilities is known is a strong assumption and it is instead reasonable to
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assume that we have a prior distribution on each of these J parameters.

In what follows we assume that for each j ∈ {1, . . . , J}, we have at time t = 0 a
Beta prior distribution on νj , i.e.,

νj ∼ B(αj0, β
j
0).

After the nth auction from the source j, if the ad slot has been purchased by the
ad trader, we know whether or not a conversion occurred (ξjn = 1 or ξjn = 0). This
enables to update the prior distribution of νj through the use of the Bayes rule. If
the nth auction from the source j occurs at time t then, assuming that

νj |Ft− ∼ B(αjt−, β
j
t−),

we obtain the following:

• If a conversion took place (ξjn = 1), then

L(νj |Ft) ∝ νj · νj
αj
t−−1(1− νj)β

j
t−−1 ∝ νjα

j
t−(1− νj)β

j
t−−1.

• If the purchased ad slot did not yield to a conversion (ξjn = 1), then

L(νj |Ft) ∝ (1− νj) · νjα
j
t−−1(1− νj)β

j
t−−1 ∝ νjα

j
t−−1(1− νj)β

j
t− .

In other words,
νj |Ft ∼ B(αjt , β

j
t ),

where
dαjt = ξj

Nj
t

1{bjt>p
j

N
j
t

}dN
j
t = dCjt

and
dβjt = (1− ξj

Nj
t

)1{bjt>p
j

N
j
t

}dN
j
t = dIjt − dC

j
t .

We obtain therefore straightforwardly that

νj |Ft ∼ B(αj0 + Cjt , β
j
0 + Ijt − C

j
t ).

In particular,

E[νj |Ft] =
αj0 + Cjt

αj0 + βj0 + Ijt
.

3.2 A new Hamilton-Jacobi-Belmann equation for the primal prob-

lem

In the above paragraph we derived the expected value of the νjs conditionally on the
information available at a given point in time. One could therefore replace at any
time the νjs by their expected value and recompute the optimal strategy � this may
be called myopic learning. However, this would be a time inconsistent approach (it
is used in many situations though), because we know the mechanism by which we
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update the prior distributions of the νjs.4

With the above Bayesian framework, the optimal control problem

inf
(b1t ,...,b

J
t )t∈AJ

E
[
Φ(I1T , . . . , I

J
T , C

1
T , . . . , C

J
T ) +K min

(
S̄ − ST , 0

)2]
.

is in fact characterized by the following HJB equation:

0 = ∂tu(t, I, C, S)

+
J∑
j=1

λj inf
bj∈R+

∫ bj

0
µje−µ

jp

[
βj0 + Ij − Cj

αj0 + βj0 + Ij
(u(t, I + ej , C, S + p)− u(t, I, C, S))

+
αj0 + Cj

αj0 + βj0 + Ij
(u(t, I + ej , C + ej , S + p)− u(t, I, C, S))

]
dp, (5)

with terminal condition

u(T, I1, . . . , IJ , C1, . . . , CJ , S) = Φ(I1, . . . , IJ , C1, . . . , CJ) +K min
(
S̄ − S, 0

)2
.

Eq. (5) is a non-standard integro-di�erential HJB equation in dimension 2J + 2
which can be seen as a system (indexed by I and C) of integro-di�erential equations
(or a system of �rst-order PDEs if we consider the same approximation as the one
we proposed for Eq. (1)). For approximating numerically the solution of Eq. (5),
the same methods as for Eq. (1) can be employed. In particular, taking account of
the Bayesian learning on the conversion rates does not cost anything � in addition
to the case of constant νjs � in terms of computation requirements and computation
time.

3.3 New equations for the dual problem

In the case of the dual problem, the optimal control problem

inf
(b1t ,...,b

J
t )t∈AJ

E
[
ST + Φ(I1T , . . . , I

J
T , C

1
T , . . . , C

J
T )
]
.

is in fact characterized by the following HJB equation:

0 = ∂tu(t, I, C, S)

+
J∑
j=1

λj inf
bj∈R+

∫ bj

0
µje−µ

jp

[
βj0 + Ij − Cj

αj0 + βj0 + Ij
(u(t, I + ej , C, S + p)− u(t, I, C, S))

+
αj0 + Cj

αj0 + βj0 + Ij
(u(t, I + ej , C + ej , S + p)− u(t, I, C, S))

]
dp, (6)

with terminal condition

u(T, I1, . . . , IJ , C1, . . . , CJ , S) = S + Φ(I1, . . . , IJ , C1, . . . , CJ).

4See [9] for a similar framework in �nance developed by one of the authors.
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As in the non-Bayesian case, this equation can be simpli�ed by using the ansatz

u(t, I1, . . . , IJ , C1, . . . , CJ , S) = S + θ(t, I1, . . . , IJ , C1, . . . , CJ).

The Bayesian counterpart of Eq. (3) is indeed:

0 = ∂tθ(t, I, C)

+

J∑
j=1

λj inf
bj∈R+

∫ bj

0
µje−µ

jp

[
p+

βj0 + Ij − Cj

αj0 + βj0 + Ij
(θ(t, I + ej , C)− θ(t, I, C))

+
αj0 + Cj

αj0 + βj0 + Ij
(θ(t, I + ej , C + ej)− θ(t, I, C))

]
dp, (7)

with terminal condition

θ(T, I1, . . . , IJ , C1, . . . , CJ) = Φ(I1, . . . , IJ , C1, . . . , CJ).

The optimal bids can be computed as above by:

bj∗I,C(t)=

[
θ(t, I, C)−

(
αj0 + Cj

αj0 + βj0 + Ij
θ(t, I + ej , C + ej) +

βj0 + Ij − Cj

αj0 + βj0 + Ij
θ(t, I + ej , C)

)]
+

.

And we have

∂tθ(t, I, C)−
J∑
j=1

λj
∫ bj∗I,C(t)

0
(1− e−µjp)dp = 0,

or equivalently

∂tθ(t, I, C)−
J∑
j=1

λj
(
bj∗I,C(t)− 1

µj

(
1− e−µ

jbj∗I,C(t)
))

= 0, (8)

with terminal condition

θ(T, I1, . . . , IJ , C1, . . . , CJ) = Φ(I1, . . . , IJ , C1, . . . , CJ).

As in the non-Bayesian case, the problem boils down to solving a large but very
simple system of ODEs. Computation capacity is needed to numerically solve this
equation, but there is no mathematical di�culty, and most importantly, no addi-
tional di�culty associated with the consideration of Bayesian learning.

It is noteworthy that for both the primal problem and the dual problem, adding
Bayesian learning of the conversion rates in the initial setting does not make the
problem more complex to solve. This is largely linked to the fact that the Bayesian
learning procedure for the conversion rates does not involve any new state variable
(as αt and βt are simple functions of It and Ct).
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4 Online learning of the distributions of the prices to

beat

4.1 Bayesian learning

In the above models, the J di�erent sources are characterized by J di�erent dis-
tributions for the price to beat. In this article, we assume that these distributions
are exponential and consequently characterized by the J parameters µ1, . . . , µJ . In
practice, we may not assume that the value of these parameter is known, and instead
assume that we have a prior distribution on each of these J parameters.

In what follows we assume that for each j ∈ {1, . . . , J}, we have at time t = 0 a
Gamma prior distribution on µj , i.e.,

µj ∼ Γ(kj0, ϑ
j
0).

After the nth auction from the source j, we know whether or not the ad trader
won that auction. Moreover, because the auction is of the Vickrey type, being the
best bidder at an auction enables to know the value of the price to beat (i.e., the
second best price). We can therefore update the prior distribution of µj through the
use of the Bayes rule. If the nth auction from the source j occurs at time t then,
assuming that

µj |Ft− ∼ Γ(kjt−, ϑ
j
t−),

we obtain the following:

• If the ad trader was the best bidder (bjt > pjn), then

L(µj |Ft) ∝ µje−µ
jpjn · µjk

j
t−−1e−ϑ

j
t−µ

j ∝ µjk
j
t−e−(ϑ

j
t−+p

j
n)µ

j
.

• If the ad trader was not the best bidder (bjt ≤ p
j
n), then

L(µj |Ft) ∝ e−µ
jbjt · µjk

j
t−−1e−ϑ

j
t−µ

j ∝ µjk
j
t−−1e−(ϑ

j
t−+b

j
t )µ

j
.

In other words,
µj |Ft ∼ Γ(kjt , ϑ

j
t ),

where
dkjt = 1{bjt>p

j

N
j
t

}dN
j
t = dIjt

and

dϑjt =

(
pj
Nj

t

1{bjt>p
j

N
j
t

} + bjt1{bjt≤p
j

N
j
t

}

)
dN j

t = inf (bjt , p
j

Nj
t

)dN j
t .

In particular, kjt = kj0 + Ijt . The variable k is not therefore a new state variable.
However, ϑ is a new state variable!

The terms in µj involved in the HJB equations are of the form µje−µ
jp. Therefore,

we need to compute E[µje−µ
jp|Ft]. We have:

11



E[µje−µ
jp|Ft] =

1

Γ(kjt )

∫ +∞

0
xe−xpxk

j
t−1ϑjt

kjt e−ϑ
j
txdx

=
Γ(kjt + 1)

Γ(kjt )

ϑjt
kjt

(ϑjt + p)
kjt+1

= kjt
ϑjt
kjt

(ϑjt + p)
kjt+1

.

4.2 A new Hamilton-Jacobi-Belmann equation for the primal prob-

lem

With the above Bayesian framework, the value function associated with the optimal
control problem

inf
(b1t ,...,b

J
t )t∈AJ

E
[
Φ(I1T , . . . , I

J
T , C

1
T , . . . , C

J
T ) +K min

(
S̄ − ST , 0

)2]
.

is a 5-variable function (or in fact a function in dimension 3J + 2)

(t, I, C, ϑ, S) 7→ u(t, I, C, ϑ, S).

The associated HJB equation is:

0 = ∂tu(t, I, C, ϑ, S)

+

J∑
j=1

λj inf
bj∈R+

[∫ bj

0

(kj0+Ij)
ϑjk

j
0+Ij

(ϑj + p)k
j
0+Ij+1

[
(1 − νj)(u(t, I + ej , C, ϑ+ pej , S + p) − u(t, I, C, ϑ, S))

+νj(u(t, I + ej , C + ej , ϑ+ pej , S + p) − u(t, I, C, ϑ, S))
]
dp

+

(
ϑj

ϑj + bj

)k
j
0+Ij

(u(t, I, C, ϑ+ bjej , S) − u(t, I, C, ϑ, S))

]
, (9)

with terminal condition

u(T, I1, . . . , IJ , C1, . . . , CJ , ϑ1, . . . , ϑJ , S) = Φ(I1, . . . , IJ , C1, . . . , CJ) +K min
(
S̄ − S, 0

)2
.

Eq. (9) is very complex because it involves two continuous variables: a scalar
variable S and a d-dimensional variable ϑ. In particular, the optimal bids are char-
acterized by complex implicit equations involving the gradient of the value function
with respect to ϑ. Approximating numerically the solution to Eq. (9) seems to be
very complex, except maybe for some speci�c choices of the function Φ.

4.3 New equations for the dual problem

In the case of the dual problem, the optimal control problem

inf
(b1t ,...,b

J
t )t∈AJ

E
[
ST + Φ(I1T , . . . , I

J
T , C

1
T , . . . , C

J
T )
]
.

12



is characterized by the following HJB equation:

0 = ∂tu(t, I, C, ϑ, S)

+

J∑
j=1

λj inf
bj∈R+

[∫ bj

0

(kj0+Ij)
ϑjk

j
0+Ij

(ϑj + p)k
j
0+Ij+1

[
(1 − νj)(u(t, I + ej , C, ϑ+ pej , S + p) − u(t, I, C, ϑ, S))

+νj(u(t, I + ej , C + ej , ϑ+ pej , S + p) − u(t, I, C, ϑ, S))
]
dp

+

(
ϑj

ϑj + bj

)k
j
0+Ij

(u(t, I, C, ϑ+ bjej , S) − u(t, I, C, ϑ, S))

]
, (10)

with terminal condition

u(T, I1, . . . , IJ , C1, . . . , CJ , ϑ1, . . . , ϑJ , S) = S + Φ(I1, . . . , IJ , C1, . . . , CJ).

As in the non-Bayesian case, this equation can be simpli�ed by using the ansatz

u(t, I1, . . . , IJ , C1, . . . , CJ , ϑ1, . . . , ϑJ , S) = S+θ(t, I1, . . . , IJ , C1, . . . , CJ , ϑ1, . . . , ϑJ).

The Bayesian counterpart of Eq. (3) is then:

0 = ∂tθ(t, I, C, ϑ)

+

J∑
j=1

λj inf
bj∈R+

[∫ bj

0

(kj0 + Ij)
ϑjk

j
0+Ij

(ϑj + p)k
j
0+Ij+1

[
p+ (1 − νj)(θ(t, I + ej , C, ϑ+ pej) − θ(t, I, C, ϑ))

+νj(θ(t, I + ej , C + ej , ϑ+ pej) − θ(t, I, C, ϑ))
]
dp

+

(
ϑj

ϑj + bj

)k
j
0+Ij

(θ(t, I, C, ϑ+ bjej) − θ(t, I, C, ϑ))

]
, (11)

with terminal condition

θ(T, I1, . . . , IJ , C1, . . . , CJ , ϑ1, . . . , ϑJ) = Φ(I1, . . . , IJ , C1, . . . , CJ).

Eq. (11) is very complex because it involves the d-dimensional continuous vari-
able ϑ. In particular, the optimal bids are characterized by complex implicit equa-
tions involving the gradient of the function θ with respect to ϑ. Approximating
numerically the solution to Eq. (10) / (11) seems to be very complex, except maybe
for some speci�c choices of the function Φ.

It is noteworthy that for both the primal problem and the dual problem, adding
Bayesian learning of the parameters µjs in the initial setting does make the problem
far more complex to solve. This is largely linked to the fact that the Bayesian learn-
ing procedure for the distribution of the price to beat involves a new state variable ϑ
which is (i) continuous and not discrete, and (ii) related to the control variables bjs.

In practice, it seems that the only realistic option for using Bayesian learning of
the distributions of the prices to beat is through myopic learning.
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5 Online learning of the auction frequencies

5.1 Bayesian learning

As for the conversion rates and the distributions of the prices to beat, the J param-
eters λ1, . . . , λJ characterizing the frequency at which each of the J sources sends
auction requests can be learnt on the run. In what follows we assume that for each
j ∈ {1, . . . , J}, we have at time t = 0 a Gamma prior distribution on λj , i.e.,

λj ∼ Γ(κj0, τ
j
0 ).

These prior distributions can be updated with the number of auction requests
received from the J di�erent sources. We have indeed:

L(λj |N j
t ) ∝ (λjt)N

j
t e−λ

jt · λjκ
j
0−1e−τ

j
0λ

j ∝ λjk
j
0+N

j
t−1e−(τ

j
0+t)λ

j
.

In other words,
λj |Ft ∼ Γ(kj0 +N j

t , τ
j
0 + t).

In particular,

E[λj |Ft] =
kj0 +N j

t

τ j0 + t
.

5.2 A new Hamilton-Jacobi-Belmann equation for the primal prob-

lem

With the above Bayesian framework, the value function associated with the optimal
control problem

inf
(b1t ,...,b

J
t )t∈AJ

E
[
Φ(I1T , . . . , I

J
T , C

1
T , . . . , C

J
T ) +K min

(
S̄ − ST , 0

)2]
.

is a 5-variable function (or in fact a function in dimension 3J + 2)

(t, I, C,N, S) 7→ u(t, I, C,N, S).

The associated HJB equation is:

0 = ∂tu(t, I, C,N, S) +
J∑
j=1

kj0 +N j

τ j0 + t

[
(u(t, I, C,N + ej , S)− u(t, I, C,N, S))

+ inf
bj∈R+

∫ bj

0

µje−µ
jp
[
(1− νj)(u(t, I + ej , C,N + ej , S + p)− u(t, I, C,N + ej , S))

+ νj(u(t, I + ej , C + ej , N + ej , S + p)− u(t, I, C,N + ej , S))
]
dp

]
, (12)

with terminal condition

u(T, I1, . . . , IJ , C1, . . . , CJ , N1, . . . , NJ , S) = Φ(I1, . . . , IJ , C1, . . . , CJ)+K min
(
S̄ − S, 0

)2
.
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Eq. (12) is a non-standard integro-di�erential HJB equation in dimension 3J + 2
which can be seen as a system (indexed by I, C, and N) of integro-di�erential
equations (or a system of �rst-order PDEs if we consider the same approximation
as the one we proposed for Eq. (1)). For approximating numerically the solution of
Eq. (12), the same methods as for Eq. (1) can be employed. The only di�erence is
that the system of equations is far larger because of the additional variable N .

5.3 New equations for the dual problem

In the case of the dual problem, the optimal control problem

inf
(b1t ,...,b

J
t )t∈AJ

E
[
ST + Φ(I1T , . . . , I

J
T , C

1
T , . . . , C

J
T )
]
.

is characterized by the following HJB equation:

0 = ∂tu(t, I, C,N, S) +

J∑
j=1

kj0 +N j

τ j0 + t

[
(u(t, I, C,N + ej , S)− u(t, I, C,N, S))

+ inf
bj∈R+

∫ bj

0

µje−µ
jp
[
(1− νj)(u(t, I + ej , C,N + ej , S + p)− u(t, I, C,N + ej , S))

+ νj(u(t, I + ej , C + ej , N + ej , S + p)− u(t, I, C,N + ej , S))
]
dp

]
, (13)

with terminal condition

u(T, I1, . . . , IJ , C1, . . . , CJ , N1, . . . , NJ , S) = S + Φ(I1, . . . , IJ , C1, . . . , CJ).

As in the non-Bayesian case, this equation can be simpli�ed by using the ansatz

u(t, I1, . . . , IJ , C1, . . . , CJ , N1, . . . , NJ , S) = S+θ(t, I1, . . . , IJ , C1, . . . , CJ , N1, . . . , NJ).

The Bayesian counterpart of Eq. (3) is then:

0 = ∂tθ(t, I, C,N) +

J∑
j=1

kj0 +N j

τ j0 + t

[
(θ(t, I, C,N + ej)− θ(t, I, C,N))

+ infbj∈R+

∫ bj

0
µje−µ

jp
[
p+ (1− νj)(θ(t, I + ej , C,N + ej)− θ(t, I, C,N + ej))

+ νj(θ(t, I + ej , C + ej , N + ej)− θ(t, I, C,N + ej))
]
dp

]
, (14)

with terminal condition

θ(T, I1, . . . , IJ , C1, . . . , CJ , N1, . . . , NJ , S) = Φ(I1, . . . , IJ , C1, . . . , CJ).

As in the non-Bayesian case, the problem boils down to solving a large, but
structurally simple, system of ODEs. Computation capacity is needed to numeri-
cally solve this equation, but there is no mathematical di�culty. It is noteworthy
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that the consideration of Bayesian learning only adds here a dimension (the vari-
able N) for the indices of the equations in the system.

It is noteworthy that for both the primal problem and the dual problem, adding
Bayesian learning of the frequencies in the initial setting makes the problem more
time-consuming as far as numerical approximations are concerned, but there is no
additional mathematical di�culty. This is related to the fact that the Bayesian
learning procedure for the frequencies involves a new state variable, but a discrete
one and not a continuous one.

Conclusion

In this paper, we consider two classical problems faced by ad trading desks � in their
relaxed forms. The �rst (primal) problem consists in buying inventories so as to max-
imize expected KPIs, with the constraint of spending no more than a given amount.
The second (dual) problem consists in minimizing the average amount spent, with
the constraint of reaching thresholds for di�erent KPIs. Our goal was to understand
how to incorporate (Bayesian) learning in these two optimal control problems. We
have seen that learning conversion rates online is very easy and does not make the
problem more complex than the initial one without learning. As far as learning the
distributions of the best prices bid by other market participants, we have seen that
only myopic learning is reasonable in terms of mathematical complexity. Finally, we
have seen that learning on the �y the frequency at which each source sends auction
requests makes the problem slightly more involved in terms of computation time,
but not more complicated mathematically speaking.

It is noteworthy that we have considered learning procedures for each type of
unknown parameters independently. However, it is easy to generalize our equations
in order to learn on the �y both the conversion rates and the frequencies for instance.
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