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Abstract

This paper addresses portfolio liquidation using a new angle. Instead of focusing only
on the scheduling aspect like Almgren and Chriss in [2], or only on the liquidity-consuming
orders like Obizhaeva and Wang in [35], we link the optimal trade-schedule to the price
of the limit orders that have to be sent to the limit order book to optimally liquidate a
portfolio. Most practitioners address these two issues separately: they compute an optimal
trading curve and they then send orders to the markets to try to follow it. The results
obtained in this paper can be interpreted and used in two ways: (i) we solve simultaneously
the two problems and provide a strategy to liquidate a portfolio over a few hours, (ii) we
provide a tactic to follow a trading curve over slices of a few minutes. As far as the model is
concerned, the interactions of limit orders with the market are modeled via a point process
pegged to a diffusive “fair price”. A Hamilton-Jacobi-Bellman equation is used to solve the
control problem involving both non-execution risk and price risk. Backtests are carried out
to exemplify the use of our results, both on long periods of time (for the entire liquidation
process) and on slices of 5 minutes (to follow a given trading curve).

Introduction

Optimal scheduling of large orders in order to control the overall trading costs with a trade-
off between market impact (demanding to trade slow) and market risk (urging to trade fast)
has been proposed in the litterature in the late nineties mainly by Bertsimas and Lo [8]
and Almgren and Chriss [2]. The original approach has been recently generalized in several
directions (see for instance [3, 4, 16, 17, 18, 21, 31, 34, 37]); however few attempts have been
made to drill down the model at the level of the interactions with the order books. The
more noticeable proposal is the one by Obizhaeva and Wang [35], followed and generalized
by Alfonsi, Fruth and Schied [1] and Predoiu, Shaikhet and Shreve [36]. This branch of the
optimal trading literature1 focuses on the dynamics initiated by aggressive orders hitting a
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75013 Paris, France. olivier.gueant@ann.jussieu.fr

∗∗Head of Quantitative Research. Crédit Agricole Cheuvreux. 9, Quai du Président Paul Doumer, 92400
Courbevoie, France. clehalle@cheuvreux.com
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resilient order-book2, ignoring trading by passive orders.

Recall that during the continuous auction processes implemented by most electronic
trading pools, market participants send their open interests (i.e. buy or sell orders) to a
queuing system where a “first in first out” queue stands at each possible price. If a buy
(respectively sell) order reaches a queue of sell (resp. buy) orders, a transaction occurs (see
for instance [33] for more explanations and modeling details). Orders generating trades are
said to be aggressive or liquidity-consuming ones; orders filling queues are said to be passive
or liquidity-providing ones. In practice, most trading algorithms are as passive as possible (a
typical balance for a scheduling algorithm is around 60% of passively obtained trades – see
[32]). The economic literature first explored and studied these interactions between orders
sent to a continuous auction system by different actors from a global efficiency viewpoint3.
With the fragmentation of equity markets in the US and in Europe, the issue of linking
optimal posting prices to the optimal liquidation of a portfolio is more and more important.
A trading algorithm has to find an optimal scheduling or rhythm for its trading, but also
to choose a sequel of prices and quantities of orders to send to the markets to follow this
optimal rhythm as much as possible.

In contrast with most of the preceding literature4, we use a new approach, introduced in
parallel by Bayraktar and Ludkovski [7] in a risk-neutral model, which is liquidity-providing
oriented: liquidation strategies involve limit orders and not market orders. Therefore, our
model may be seen as addressing two problems at the same time. It indeed solves the “opti-
mal scheduling and posting” problem as a whole, but it can also be used to send limit orders
within slices of a few minutes in order to follow a given trading curve.
Since we use limit orders, no execution cost is incurred in our model and the classical trade-
off of the literature between market impact, or execution costs, and price risk disappears in
our setting (except at the final time for the shares that may remain). However, since the
broker does not know when his orders are going to be executed – if at all –, a new risk is
borne: (non-)execution risk. If a limit ask order is inserted in the order book, probability of
execution and eventually time of execution will depend on the price of the order.

In our framework, the flow of trades “hitting” a passive order at a distance δat from a
reference price (the “fair price”) St – modeled by a Brownian motion – follows an adapted
point process of intensity A exp(−kδat ). It means that the further away from the “fair price”
an order is posted, the less transactions it will obtain. In practice, if the limit order price is
far above the best ask price, the trading gain may be high but execution is far from being
guaranteed and the broker is exposed to the risk of a price decrease. On the contrary, if the
limit order price is near the best ask price, or even reduces the market bid-ask spread, gains
will be small but the probability of execution will be higher, resulting in faster trading and
less price risk.

These modeling choices are rooted to a liquidity model that was originally introduced by
Ho and Stoll [26] and then modified by Avellaneda and Stoikov [5] to model market making.
The main characteristic of this model is that it does not explicitly consider the limit order
book but statistically models liquidity: this is an advantage over limit order book models
when it comes to mathematical tractability. Our paper, along with [7], is an attempt to use
this model to tackle the completely different issue of optimal liquidation. However, contrary
to Bayraktar and Ludkovski [7] who only consider risk-neutral traders, our setting takes into
account aversion to both price risk and non-execution risk.

2See [20, 27] for the admissible transient market impact models.
3see [19] for a study of the effect of “smart order routing” on competitive trading venues, or [9] for a study of

the efficiency of order matching mechanisms.
4Kratz and Schöneborn [30] proposed an approach with both market orders and access to dark pools.
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Similar models have been used to deal with the initial problem of market making. Cartea,
Jaimungal and Ricci [13] consider a more sophisticated model than the Avellaneda-Stoikov
one, including richer dynamics of market orders, impact on the limit order book, adverse
selection effects and predictable α, to deal with high-frequency market making. Cartea and
Jaimungal [12] recently used a similar model to introduce risk measures for high-frequency
trading. Earlier, they used a model inspired from Avellaneda-Stoikov [11] in which the mid-
price is modeled by a Hidden Markov Model. Guilbaud and Pham [23] also used a model
inspired from the Avellaneda-Stoikov framework but including market orders and limit or-
ders at best (and next to best) bid and ask together with stochastic spreads.
These models are all dealing with high-frequency trading and market-making but may be
used for optimal liquidation issues5. None of them however manage to provide simple expres-
sions for the optimal quotes6: they rely either on first order approximations or on numerical
approximations for PDEs. This paper, by contrast, provides simple and easy-to-compute
expressions for the optimal quotes when the trader is willing to liquidate a portfolio. It
is also noteworthy that a companion paper [22] provides new analytics within the original
Avellaneda-Stoikov framework and closed-form approximations for the quotes of a market
maker using mathematical tools from spectral theory.

The remainder of this text is organized as follows. In the first section, we present the
setting of the model and the main hypotheses on execution. The second section is devoted to
the resolution of the partial differential equations arising from the control problem. Section
3 deals with three special cases: (i) the time-asymptotic case, (ii) the absence of price risk
and the risk-neutral case, and (iii) a limiting case in which the trader has a large incentive to
liquidate before the end. These special cases provide simple closed-form formulae allowing
us to better understand the forces at stake. Then, in section 4, we carry out comparative
statics and discuss the way optimal strategies depend on the model parameters. Finally, in
section 5, we show how our approach can be used in practice for optimal liquidation, both
on a long period of time, to solve the entire liquidation problem, and on slices of 5 minutes,
when one wants to follow a predetermined trading curve.

1 Setup of the model

Let us fix a probability space (Ω,F ,P) equipped with a filtration (Ft)t≥0 satisfying the usual
conditions. We assume that all random variables and stochastic processes are defined on
(Ω,F , (Ft)t≥0,P).

We consider a trader who has to liquidate a portfolio containing a large quantity q0 of a
given stock. We suppose that the reference price of the stock (which can be considered the
mid-price or the best bid quote for example) moves as a brownian motion with a drift:

dSt = µdt+ σdWt

The trader under consideration will continuously propose an ask quote7 denoted Sa
t = St+δat

and will hence sell shares according to the rate of arrival of aggressive orders at the prices
he quotes.
His inventory q, that is the quantity he holds, is given by qt = q0 − Na

t where Na is the
jump process counting the number of shares he sold8. We assume that jumps are of unitary
size and it is important to notice that 1 share may be understood as 1 bunch of shares, each

5A recently-released working paper by Guilbaud and Pham [24] treated the two questions using a similar model
in a pro-rata microstructure.

6be it for market making or if they were used to deal with optimal liquidation strategies.
7In what follows, we will often call δat the quote instead of Sa

t .
8Once the whole portfolio is liquidated, we assume that the trader remains inactive.
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bunch being of the same size9. Arrival rates obviously depend on the price Sa
t quoted by

the trader and we assume that intensity λa associated to Na is of the following form:

λa(δa) = A exp(−kδa) = A exp(−k(sa − s))

This means that the lower the order price, the faster it will be executed.

As a consequence of his trades, the trader has an amount of cash whose dynamics is
given by:

dXt = (St + δat )dN
a
t

The trader has a time horizon T to liquidate the portfolio and his goal is to optimize
the expected utility of his P&L at time T . We will focus on CARA utility functions and we
suppose that the trader optimizes:

sup
(δat )t∈A

E [− exp (−γ(XT + qT (ST − b)))]

where A is the set of predictable processes on [0,T], bounded from below, where γ is the
absolute risk aversion characterizing the trader, where XT is the amount of cash at time T ,
where qT is the remaining quantity of shares in the inventory at time T and where b is a
cost (per share) one has to incur to liquidate the remaining quantity at time T 10.

2 Optimal quotes

2.1 Hamilton-Jacobi-Bellman equation

The optimization problem set up in the preceding section can be solved using classical Bell-
man tools. To this purpose, we introduce the Hamilton-Jacobi-Bellman equation associated
to the optimization problem, where u is an unknown function that is going to be the value
function of the control problem:

(HJB) ∂tu(t, x, q, s) + µ∂su(t, x, q, s) +
1

2
σ2∂2

ssu(t, x, q, s)

+ sup
δa

λa(δa) [u(t, x+ s+ δa, q − 1, s)− u(t, x, q, s)] = 0

with the final condition:

u(T, x, q, s) = − exp (−γ(x+ q(s− b)))

and the boundary condition:

u(t, x, 0, s) = − exp (−γx)

To solve the Hamilton-Jacobi-Belmann equation, we will use a change of variables that
transforms the PDEs in a system of linear ODEs.

9Typically the average trade size (hereafter ATS) or a fraction of it. If one wants to replace orders of size 1 by
orders of size δq in the model, this can be done easily. However, the framework of the model imposes to trade with
orders of constant size, an hypothesis that is an approximation of reality since orders may in practice be partially
filled.

10We introduced here a constant liquidation cost but most results would be mutatis mutandis the same for an
instantaneous market impact function b(qT ).
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Proposition 1 (A system of linear ODEs). Let us consider a family of functions (wq)q∈N
solution of the linear system of ODEs (S) that follows:

∀q ∈ N, ẇq(t) = (αq2 − βq)wq(t)− ηwq−1(t)

with wq(T ) = e−kqb and w0 = 1, where α = k
2γσ

2, β = kµ and η = A(1 + γ
k )

−(1+ k
γ
)
.

Then u(t, x, q, s) = − exp(−γ(x+ qs))wq(t)
− γ

k is solution of (HJB).

The change of variables used in Proposition 1 is based on two different ideas. First,
the choice of a CARA utility function allows to factor out the Mark-to-Market value of the
portfolio (x + qs). Then, the exponential decay for the intensity allows to introduce wq(t)
and to end up with a linear system of ordinary differential equations.

Now, using this system of ODEs, we can find the optimal quotes through a verification
theorem:

Theorem 1 (Verification theorem and optimal quotes). Let us consider the solution w of
the system (S) of Proposition 1.

Then, u(t, x, q, s) = − exp(−γ(x + qs))wq(t)
− γ

k is the value function of the control problem
and the optimal ask quote can be expressed as:

δa∗(t, q) =

(
1

k
ln

(
wq(t)

wq−1(t)

)
+

1

γ
ln
(
1 +

γ

k

))

2.2 Numerical example

Proposition 1 and Theorem 1 provide a way to solve the Hamilton-Jacobi-Bellman equation
and to derive the optimal quotes for a trader willing to liquidate a portfolio. To exemplify
these results, we compute the optimal quotes when a quantity q = 6 has to be sold within
5 minutes (Figure 1).
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Figure 1: Optimal strategy δa∗(t, q) (in Ticks) for an agent willing to sell a quantity up to q = 6 within

5 minutes (µ = 0 (Tick.s−1), σ = 0.3 (Tick.s−
1
2 ), A = 0.1 (s−1), k = 0.3 (Tick−1), γ = 0.05 (Tick−1) and

b = 3 (Tick))
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We clearly see that the optimal quotes depend on inventory in a monotonic way. In-
deed, a trader with a lot of shares to liquidate need to trade fast to reduce price risk and
will therefore propose a low price. On the contrary a trader with only a few shares in his
portfolio may be willing to benefit from a trading opportunity and will send an order with
a higher price because the risk he bears allows him to trade more slowly.

Now, coming to the time-dependence of the quotes, a trader with a given number of
shares will, ceteris paribus, lower his quotes as the time horizon gets closer, except near the
final time T because a certain maximum discount b is guaranteed. At the limit, when t is
close to the time horizon T , the optimal quotes tend to the same value that depend on the
liquidation cost b: δa∗(T, q) = −b+ 1

γ ln
(
1 + γ

k

)
.

As on the above figure, negative quotes may appear. They appear when the quantity to
liquidate is large compared to the remaining time, especially when (i) there is a real need to
liquidate before time T because the liquidation cost b is high and/or (ii) when risk aversion
and volatility are high, because price risk is then an important consideration. When this
happens, it means that there is a need to reduce the number of shares at hand. In that
case, a model involving both limit orders and market orders would be better suited. In
practice, one should not use a liquidation model that only involves limit orders when the
volume to be executed is too large and evidently requires market orders from the very be-
ginning. However, if a negative quote appears after some time, because of a slow execution,
then sending a market order (with thus guaranteed execution) to reduce the inventory is a
possible approximation of the model11.

Also, if we consider the above optimal strategy on a longer time window (see Figure 2),
we see that optimal quotes have an asymptotic behavior as the time horizon increases. The
associated limiting case will be studied in the next section.
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Figure 2: Optimal strategy δa∗(t, q) (in Ticks) for q = 1, . . . , 6 and T = 2 hours (µ = 0 (Tick.s−1),

σ = 0.3 (Tick.s−
1
2 ), A = 0.1 (s−1), k = 0.3 (Tick−1), γ = 0.05 (Tick−1) and b = 3 (Tick))

Finally, the average number of shares at each point in time, called trading curve by
analogy with the deterministic trading curves of Almgren and Chriss, can be obtained by
Monte-Carlo simulations as exemplified on Figure 3 when the trader uses the optimal strat-

11It must be noted that this ad hoc approximation ignores transaction costs associated to market orders.
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Figure 3: Trading curve for an agent willing to sell a quantity of shares q = 6 within 5 minutes (µ =

0 (Tick.s−1), σ = 0.3 (Tick.s−
1
2 ), A = 0.1 (s−1), k = 0.3 (Tick−1), γ = 0.05 (Tick−1)) and b = 3 (Tick)

In particular, because b = 3, the trader has a weak incentive to liquidate strictly before
time T and there are cases for which liquidation is not complete before time T . This is the
reason why we do not have E[qT ] = 0 on the above figure. We will study below the limiting
case b → +∞ that “forces” liquidation before time T .

3 Special cases

The above equations can be solved explicitly for w and hence for the optimal quotes using
the above verification theorem. However, the resulting closed-form expressions are not really
tractable and do not provide any intuition on the behavior of the optimal quotes. Three
special cases are now considered for which simpler closed-form formulae can be derived. We
start with the limiting behavior of the quotes when the time horizon T tends to infinity. We
then consider a case in which there is no price risk and a case where the agent is risk-neutral
to both price risk and non-execution risk. We finally consider, by analogy with the classical
literature, the behavior of the solution as the liquidation cost b increases.
All these special cases allow to comment on the role of the parameters, before we carry out
comparative statics in the next section.

3.1 Asymptotic behavior as T → +∞
We have seen on Figure 2 that the optimal quotes seem to exhibit an asymptotic behavior.
We are in fact going to prove that δa∗(0, q) tends to a limit as the time horizon T tends to
infinity, when the inequality µ < 1

2γσ
2 is satisfied12.

12In particular, when µ = 0, this means that the result is true as soon as γ > 0 (and σ > 0). As we will see
below, there is no asymptotic value in the risk-neutral case.
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Proposition 2 (Asymptotic behavior of the optimal quotes). Let us suppose that13 µ <
1
2γσ

2.
Let us consider the solution w of the system (S) of Proposition 1. Then:

lim
T→+∞

wq(0) =
ηq

q!

q∏
j=1

1

αj − β

The resulting asymptotic behavior for the optimal ask quote of Theorem 1 is:

lim
T→+∞

δa∗(0, q) =
1

k
ln

(
A

1 + γ
k

1

αq2 − βq

)
=

1

k
ln

(
A

k + γ

1
1
2γσ

2q2 − µq

)

This first closed-form formula deserves a few comments. First of all, the asymptotic
quote is obviously a decreasing function of the number of shares in the portfolio. Coming to
the parameters, we can analyze how the asymptotic quote depends on µ, σ, A, k, and γ.
As µ increases, the trader increases his asymptotic quote to slow down the execution process
and benefit from the price increase. As far as volatility is concerned, an increase in σ corre-
sponds to an increase in price risk and this provides the trader with an incentive to speed
up the execution process. Therefore, it is natural that the asymptotic quote is a decreasing
function of σ. Now, as A increases, the asymptotic quote increases. This result is natu-
ral because if the rate of arrival of liquidity-consuming orders increases, the trader is more
likely to liquidate his shares faster and posting deeper into the book allows for larger profits.
Coming to k, the result depends on the sign of the asymptotic quote. If the asymptotic
quote is positive – this is the only interesting case since we shall not use our model when
market orders are required from the start14 –, then the asymptotic quote is a decreasing
function of k. The mechanism at play is the same as for A: a decrease in k increases the
probability to be executed at a given price (when δa > 015) and this gives an incentive to
post orders deeper into the order book. Finally, the asymptotic quote decreases as the risk
aversion increases. An increase in risk aversion forces indeed the trader to reduce both price
risk and non-execution risk and this leads to posting orders with lower prices.
One also has to notice that the asymptotic quote does not depend on the liquidation cost b.

3.2 Absence of price risk and risk-neutrality

The above result on asymptotic behavior does not apply when µ = σ = 0. We now con-
centrate on this case in which there is no drift (µ = 0) and no volatility (σ = 0). In this
case, the trader bears no price risk because σ = 0 and the only risk he faces is linked to the
non-execution of his orders.

We now derive tractable formulae for w and for the optimal quotes:

Proposition 3 (The no-drift/no-volatility case). Assume that σ = 0 and that there is no
drift (µ = 0).
Let us define:

wq(t) =

q∑
j=0

ηj

j!
e−kb(q−j)(T − t)j

13This condition is the same as α > β.
14In all cases, increasing k brings the asymptotic quote closer to 0.
15The issue surrounding negative quotes is that k 7→ Ae−kδa is a decreasing function for δa > 0 and an increasing

function for δa < 0. Subsequently, the intuition we have about k in the usual case δa > 0 is reversed for negative
quotes.
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Then w defines a solution of the system (S) and the optimal quote is:

δa∗(t, q) = −b+
1

k
ln

(
1 +

ηq

q! (T − t)q∑q−1
j=0

ηj

j! e
−kb(q−j)(T − t)j

)
+

1

γ
ln
(
1 +

γ

k

)
In this no-drift/no-volatility case, the optimal quote still is an increasing function of A

and a decreasing function of γ16. If the above closed-form formula does not shed any par-
ticular light on the dependence on k, it highlights the role played by the liquidation cost b.
Differentiating the above formula, we indeed get a negative sign and therefore that optimal
quote is a decreasing function of b. Since b is the cost to pay for each share remaining at
time T , an increase in b gives an incentive to speed up execution and hence to lower the
quotes.

We also see that the optimal quote is bounded from below by −b + 1
γ ln

(
1 + γ

k

)
. Since

execution is guaranteed at price s− b at time T , it is in particular natural in the absence of
price risk, that quotes never go below −b.

Now, if one wants to remove risk aversion with respect to both price risk and non-
execution risk, one can consider the limit of the above solution when γ tends to 017.

One then obtains:

δa∗(t, q) = −b+
1

k
ln

(
1 +

Aq

eqq!(T − t)q∑q−1
j=0

Aj

ejj!
e−kb(q−j)(T − t)j

)
+

1

k

and this is the result of Bayraktar and Ludkovski [7] in the case b = 0, because they do
not consider any liquidation cost. In particular, the optimal quote of [7] does not converge
to a limit value as T tends to +∞, but rather increases with no upper bound. This is an
important difference between the risk-neutral case and our risk-adverse framework.

3.3 Limiting behavior as b → +∞
Let us now consider the limiting case b → +∞. Sending b to infinity corresponds to a situa-
tion in which a very high incentive is given to the trader for complete liquidation before time
T . If we look at the Almgren-Chriss-like literature on optimal execution, the authors are
often assuming that qT = 018. Hence, if one writes the value functions associated to most
liquidity-consuming optimal strategies, it turns out that they are equal to −∞ at the time
horizon T except when the inventory is equal to nought (hence b = +∞, in our framework).
However, here, due to the uncertainty on execution, we cannot write a well-defined control
problem when b is equal to +∞. Rather, we are interested in the limiting behavior when
b → +∞, i.e. when the incentive to liquidate before time T is large.

By analogy with the initial literature on optimal liquidation [2], we can also have some
limiting results on the trading curve.

Hereafter we denote wb,q(t) the solution of the system (S) for a given liquidation cost b,
δa∗b (t, q) the associated optimal quote and qb,t the resulting process modeling the number of
stocks in the portfolio.

16Recall that η = A(1 + γ
k )

−(1+ k
γ ).

17The same result holds if one sends γ to 0 for any value of the volatility parameter σ.
18The authors most often consider target problems in which the target can always be attained.
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Proposition 4 (Form of the solutions, trading intensity and trading curve). The limiting
solution limb→+∞wb,q(t) is of the form Aqvq(t) where v does not depend on A.

The limit of the trading intensity limb→+∞Ae−kδa∗b does not depend on A.

Consequently, the trading curve Vb(t) := E[qb,t] verifies that V (t) = limb→+∞ Vb(t) is
independent of A.

More results can be obtained in the no-volatility case:

Proposition 5 (no-volatility case, b → +∞). Assume that σ = 0 and consider first the case
µ ̸= 0. We have:

lim
b→+∞

wb,q(t) =
ηq

q!

(
eβ(T−t) − 1

β

)q

The limit of the optimal quote is:

δa∗∞(t, q) = lim
b→+∞

δa∗b (t, q) =
1

k
ln

(
A

1 + γ
k

1

q

eβ(T−t) − 1

β

)

The limit of the associated trading curve is V (t) = q0

(
1−e−β(T−t)

1−e−βT

)1+ γ
k
.

Now, in the no-volatility/no-drift case (σ = µ = 0), similar results can be obtained, either
directly or sending µ to 0 in the above formulae:

lim
b→+∞

wb,q(t) =
ηq

q!
(T − t)q

The limit of the optimal quote is given by:

δa∗∞(t, q) = lim
b→+∞

δa∗b (t, q) =
1

k
ln

(
A

1 + γ
k

1

q
(T − t)

)

The limit of the associated trading curve is V (t) = q0
(
1− t

T

)1+ γ
k .

This third limiting case confirms the monotonicity results we discussed above: the opti-
mal quote is an increasing function of A and µ19 and it is a decreasing function of γ (and of
the number of shares). Concerning the shape of the trading curve, the role played by the risk
aversion parameter γ is the same as in Almgren-Chriss: an increase in γ forces the trader
to speed up the execution process and therefore steepens the slope of the trading curve.
The role of µ is also interesting because a positive trend goes against the naturally convex
shape of the trading curve. Since a trader slows down the execution process to benefit from
a positive trend, there is a trade-off between positive trend on one hand and price risk on
the other, and the trading curve may turn out to be concave when the upward trend is
sufficiently important to compensate the effect of risk aversion.

Coming to k, this third limiting case is particularly interesting because there is no lower
bound to the optimal quotes and we have seen above that the occurrence of negative quotes
was a problem to interpret the parameter k. Hence, the limiting case b → +∞ appears to
be a worst case.

19Recall that β = kµ.
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In normal circumstances, we expect the optimal quote to be a decreasing function
of k. However, straightforward computations give (in the no-drift case) that dδa∗∞ (t,q)

dk =
− 1

kδ
a∗
∞(t, q) + 1

k2
γ

γ+k . The sign of this expression being negative if and only if δa∗∞(t, q) is
above a certain positive threshold, the dependence on k may be reversed even for positive
(but low) quotes. In the case of the asymptotic (and constant) quote discussed above, the
threshold was 0. Here, in the dynamic case under consideration, the high probability of neg-
ative optimal quotes in the future may break the monotonicity on k and that is the reason
why the threshold is positive.
Although this limiting case is rather extreme, it illustrates well the issues of the model when
execution is too slow and would ideally require market orders. It is noteworthy that in the
comparative statics we carry out in the next section, the usual monotonicity property is only
broken for extreme values of the parameters. Also, in most reasonable cases we considered
in practice, the quotes were decreasing in k.

4 Comparative statics

We discussed above the role played by the different parameters in particular limiting cases.
We now consider the general case and carry out comparative statics on optimal quotes. The
tables we obtain confirm the intuitions we developed in the preceding section.

Influence of the drift µ:

As far as the drift is concerned, quotes are naturally increasing with µ. If indeed the
trader expects the price to move down, he is going to send orders at low prices to be executed
fast and to reduce the impact of the decrease in price on the P&L. On the contrary, if he
expects the price to rise, he is going to post orders deeper in the book in order to slow down
execution and benefit from the price increase. This is well exemplified by Table 1.

q µ = −0.01 (Tick.s−1) µ = 0 (Tick.s−1) µ = 0.01 (Tick.s−1)

1 9.2252 10.6095 12.2329
2 6.581 7.8737 9.3921
3 4.92 6.1299 7.5507
4 3.6732 4.8082 6.1391
5 2.6607 3.728 4.9765
6 1.8012 2.8073 3.9806

Table 1: Dependence on µ of δa∗(0, q) with T = 5 (minutes), σ = 0.3 (Tick.s−
1
2 ), A = 0.1 (s−1), k =

0.3 (Tick−1), γ = 0.05 (Tick−1) and b = 3 (Tick)

Influence of the volatility σ:

Now, coming to volatility, the optimal quotes depend on σ in a monotonic way. If there
is an increase in volatility, then price risk increases. In order to reduce this additional price
risk the trader will send orders at lower price. This is what we observe numerically on Table 2.
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q σ = 0 (Tick.s−
1
2 ) σ = 0.3 (Tick.s−

1
2 ) σ = 0.6 (Tick.s−

1
2 )

1 10.9538 10.6095 9.6493
2 8.6482 7.8737 6.0262
3 7.3019 6.1299 3.6874
4 6.3486 4.8082 1.9455
5 5.6109 3.728 0.55671
6 5.0097 2.8073 -0.59773

Table 2: Dependence on σ of δa∗(0, q) with T = 5 (minutes), µ = 0 (Tick.s−1), A = 0.1 (s−1), k =
0.3 (Tick−1), γ = 0.05 (Tick−1) and b = 3 (Tick)

Influence of the intensity scale parameter A:

Now, coming to A, we observe numerically, and as expected, that the optimal quote is an
increasing function of A (see Table 3). If A increases, the probability to be executed indeed
increases and the trader will then increase his quotes to obtain transactions at higher prices.

q A = 0.05 (s−1) A = 0.1 (s−1) A = 0.15 (s−1)

1 8.4128 10.6095 11.9222
2 5.6704 7.8737 9.1898
3 3.9199 6.1299 7.4491
4 2.5917 4.8082 6.1302
5 1.5051 3.728 5.0525
6 0.57851 2.8073 4.1341

Table 3: Dependence on A of δa∗(0, q) with T = 5 (minutes), µ = 0 (Tick.s−1), σ = 0.3 (Tick.s−
1
2 ),

k = 0.3 (Tick−1), γ = 0.05 (Tick−1) and b = 3 (Tick)

Influence of the intensity shape parameter k:

Now, as far as k is concerned, the dependence of the optimal quote on k is ambiguous
because the interpretation of k depends on the optimal quote itself. An increase in k should
correspond indeed to a decrease in the probability to be executed at a given price in most
cases the model is used. However, due to the exponential form of the execution intensity,
the very possibility to use negative quotes may reverse the reasoning (see the discussions in
section 3 for the asymptotic quotes and in the extreme case b → +∞).

In the first case we consider, which only leads to positive optimal quotes, an increase in
k forces the trader to decrease the price of the orders he sends to the market, as exemplified
by Table 4. However, if price risk is really important (high volatility and/or large quantity
to liquidate) the optimal quotes may be negative and, in that case, the role of k is reversed.
This is the case when σ takes (unrealistically) high values, as exemplified on Table 5.

12



q k = 0.2 (Tick−1) k = 0.3 (Tick−1) k = 0.4 (Tick−1)

1 15.8107 10.6095 7.941
2 11.9076 7.8737 5.7972
3 9.4656 6.1299 4.4144
4 7.6334 4.8082 3.3618
5 6.1436 3.728 2.5011
6 4.8761 2.8073 1.7688

Table 4: Dependence on k of δa∗(0, q) with T = 5 (minutes), µ = 0 (Tick.s−1), σ = 0.3 (Tick.s−
1
2 ),

A = 0.1 (s−1), γ = 0.05 (Tick−1) and b = 3 (Tick)

q k = 0.2 (Tick−1) k = 0.3 (Tick−1) k = 0.4 (Tick−1)

1 2.8768 0.79631 -0.031056
2 -4.0547 -3.8247 -3.4968
3 -8.1093 -6.5278 -5.5241
4 -10.9861 -8.4457 -6.9625
5 -13.2176 -9.9333 -8.0782
6 -15.0408 -11.1488 -8.9899

Table 5: Dependence on k of δa∗(0, q) with T = 5 (minutes), µ = 0 (Tick.s−1), σ = 3 (Tick.s−
1
2 ),

A = 0.1 (s−1), γ = 0.05 (Tick−1) and b = 3 (Tick)

Influence of the risk aversion γ:

Turning to the risk aversion parameter γ, two effects are at stake that go in the same direc-
tion. The risk aversion is indeed common for both price risk and non-execution risk. Hence
if risk aversion increases, the trader will try to reduce both price risk and non-execution risk,
thus selling at lower price. We indeed see on Table 6 that optimal quotes are decreasing in γ.

q γ = 0.01 (Tick−1) γ = 0.05 (Tick−1) γ = 0.5 (Tick−1)

1 11.2809 10.6095 9.84
2 8.8826 7.8737 6.7461
3 7.4447 6.1299 4.7262
4 6.4008 4.8082 3.189
5 5.5735 3.728 1.9384
6 4.8835 2.8073 0.88139

Table 6: Dependence on γ of δa∗(0, q) with T = 5 (minutes), µ = 0 (Tick.s−1), σ = 3 (Tick.s−
1
2 ),

A = 0.1 (s−1), k = 0.3 (Tick−1), and b = 3 (Tick)

The above table highlights the importance of risk aversion for the optimal liquidation
problem. When the number of shares to liquidate is not too small, we indeed see that the
optimal quotes depend strongly on γ. In particular, our reference case γ = 0.05 is really
different from the case γ = 0.01 and therefore very different from the risk-neutral case of [7].

Influence of the liquidation cost b:

Finally, the influence of the liquidation cost b is straightforward. If b increases, then the
need to sell strictly before time T is increased because the value of any remaining share at
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time T decreases. Hence, the optimal quotes must be decreasing in b and this is what we
observe on Table 7.

q b = 0 (Tick) b = 3 (Tick) b = 20 (Tick)

1 10.7743 10.6095 10.4924
2 8.0304 7.8737 7.7685
3 6.278 6.1299 6.0353
4 4.9477 4.8082 4.7229
5 3.859 3.728 3.6509
6 2.9301 2.8073 2.7374

Table 7: Dependence on b of δa∗(0, q) with T = 5 (minutes), µ = 0 (Tick.s−1), σ = 3 (Tick.s−
1
2 ),

A = 0.1 (s−1), k = 0.3 (Tick−1) and γ = 0.05 (Tick−1)

5 Historical simulations

Before using the above model in reality, we need to discuss some features of the model that
need to be adapted before any backtest is possible.

First of all, the model is continuous in both time and space while the real control problem
under consideration is intrinsically discrete in space, because of the tick size, and discrete
in time, because orders have a certain priority and changing position too often reduces the
actual chance to be reached by a market order. Hence, the model has to be reinterpreted
in a discrete way. In terms of prices, quotes must not be between two ticks and we decided
to round the optimal quotes to the nearest tick20. In terms of time, an order is sent to the
market and is not canceled nor modified for a given period of time ∆t, unless a trade occurs
and, though perhaps partially, fills the order. Now, when a trade occurs and changes the
inventory or when an order stayed in the order book for longer than ∆t, then the optimal
quote is updated and, if necessary, a new order is inserted.

Now, concerning the parameters, σ, A and k can be calibrated on trade-by-trade limit
order book data while γ has to be chosen. However, it is well known by practitioners that A
and k have to depend at least on the market bid-ask spread. Since we do not explicitly take
into account the underlying market, there is no market bid-ask spread in the model. Thus,
we simply chose to calibrate21 A and k as functions of the market bid-ask spread, making
then an off-model hypothesis.
As far as γ is concerned, a choice based on a Value at Risk limit is possible but requires the
use of Monte-Carlo simulations. We decided in our backtests to assign γ a value that makes
the first quote δa∗ equal to 1 for typical values of A and k.

Turning to the backtests, they were carried out with trade-by-trade data and we assumed
that our orders were entirely filled when a trade occurred at or above the ask price quoted
by the agent. Our goal here is just to provide examples in various situations and, to exem-
plify the practical use of this model, we carried out several backtests22 on the French stock

20We also, alternatively, randomized the choice with probabilities that depend on the respective proximity to
the neighboring quotes.

21A and k are updated as new information comes. Interestingly, Cartea, Jaimungal and Ricci [13] considered
stochastic parameters and manage to derive a first order approximation for the optimal quotes in the case of a
market making model.

22No drift in prices is assumed in the strategy used for backtesting.
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AXA, either on very short periods (slices of 5 minutes) or on slightly longer periods of a few
hours. Armed with our experience of the model, we believe that it is particularly suited to
optimize liquidation within slices of a global trading curve, be it a TWAP, a VWAP, or an
Implementation Shortfall trading curve.

The first two examples (Figures 4 and 5) consist in liquidating a quantity of shares equal
to 3 times the ATS23. The periods have been chosen to capture the behavior in both bullish
and bearish markets.
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Figure 4: Backtest example on AXA (November 5th 2010). The strategy is used to sell a quantity of
shares equal to 3 times the ATS within 5 minutes. Top: quotes of the trader (bold line), market best
bid and ask quotes (thin lines). Trades are represented by dots. Bottom left: evolution of the inventory.
Bottom right: cash at hand.

On Figure 4, we see that the first order is executed after 50 seconds. Then, since the
trader has only 2 times the ATS left in his inventory, he sends an order at a higher price.
Since the market price moves up, the second order is executed in the next 30 seconds, in
advance on the average schedule. This is the reason why the trader places a new order
far above the best ask. Since this order is not executed within the time window ∆t, it is

23In the backtests we do not deal with quantity and priority issues in the order books and supposed that our
orders were always entirely filled.
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canceled and new orders are successively inserted with lower prices. The last trade happens
less than 1 minute before the end of the period. Overall, on this example, the strategy works
far better than a market order (even ignoring execution costs).

On Figure 5, we see the use of the strategy in a bearish period. The first order is executed
rapidly and since the market price goes down, the trader’s last orders are only executed at
the end of the period when prices of orders are lowered substantially as it becomes urgent
to sell. Practically, this obviously raises the question of linking a trend detector to these
optimal liquidation algorithms.
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Figure 5: Backtest example on AXA (November 5th 2010). The strategy is used to sell a quantity of
shares equal to 3 times the ATS within 5 minutes. Top: quotes of the trader (bold line), market best
bid and ask quotes (thin lines). Trades are represented by dots. Bottom left: evolution of the inventory.
Bottom right: cash at hand.
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Finally, the model can also be used on longer periods and we exhibit the use of the
algorithm on a period of two hours, to sell a quantity of shares equal to 20 times the ATS,
representing here around 5% of the volume during that period (Figure 6).
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Figure 6: Backtest example on AXA (November 8th 2010). The strategy is used to sell a quantity of
shares equal to 20 times the ATS within 2 hours. Top: quotes of the trader (bold line), market best bid
and ask quotes (thin lines). Trades are represented by dots. Bottom left: evolution of the inventory.
Bottom right: cash at hand.
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Conclusion

As claimed in the introduction, this paper is, to authors’ knowledge, the first proposal to
optimize the trade scheduling of large orders with small passive orders when price risk and
non-execution risk are taken into account. The classical approach to optimal liquidation,
following the Almgren-Chriss framework, consisted in a trade-off between price risk and
execution cost/market impact. In the case of liquidity-providing orders, this trade-off dis-
appears but a new risk is borne by the agent: non-execution risk.

The problem is then a new stochastic control problem and an innovative change of vari-
ables allows to reduce the 4-variable Hamilton-Jacobi-Bellman equation to a system of linear
ordinary differential equations. Practically, the optimal quote can therefore be found in two
steps: (1) solve a linear system of ODEs, (2) deduce the optimal price of the order to be
sent to the market.

We studied various limiting cases that allowed to find the asymptotic behavior of the
optimal strategy and to find the result obtained in parallel by Bayraktar and Ludkovski [7],
taking the risk-neutral limit. This also allowed us to confirm our intuition about the role
played by the parameters.

Numerical experiments and backtests have been carried out and the results are promis-
ing. However, two possible improvements are worth the discussion.

First, no explicit model of what could be called “passive market impact” (i.e. the per-
turbations of the price formation process by liquidity provision) is used here. Interestingly,
Jaimungal, Cartea and Ricci [13] recently introduced market impact in a similar model, the
market impact occurring when execution takes place. We may consider introducing a similar
effect in future versions of the model. Also, thanks to very promising and recent studies of
the multi-dimensional point processes governing the arrival of orders (see for instance the
link between the imbalance in the order flow and the moves of the price studied in [14] or
[15], or interesting properties of Hawkes-like models in [6]), we can hope for obtaining new
models with passive market impact in the near future. The authors will try to embed them
into the HJB framework used here.

Second, the separation of the variables (x, s) and (t, q) is a property associated to the use
of a CARA utility function and to the brownian dynamic of the price and is independent of
the exponential decay for the arrival of orders. An on-going work aims at generalizing the
above model to a general function λa(·) using this separation of variables.

18



Appendix

Proof of Proposition 1 and Theorem 1:

First, let us remark that a solution (wq)q of (S) exists and is unique and that, by im-
mediate induction, its components are strictly positive for all times. Then, let us introduce
u(t, x, q, s) = − exp (−γ(x+ qs))wq(t)

− γ
k .

We have:

∂tu+ µ∂su+
1

2
σ2∂2

ssu = −γ

k

ẇq(t)

wq(t)
u− γqµu+

γ2σ2

2
q2u

Now, concerning the non-local part of the equation, we have:

sup
δa

λa(δa) [u(t, x+ s+ δa, q − 1, s)− u(t, x, q, s)]

= sup
δa

Ae−kδau(t, x, q, s)

[
exp (−γδa)

(
wq−1(t)

wq(t)

)− γ
k

− 1

]
The first order condition of this problem corresponds to a maximum and writes:

(k + γ) exp (−γδa)

(
wq−1(t)

wq(t)

)− γ
k

= k

Hence we introduce the candidate δa∗ for the optimal control:

δa∗ =
1

k
ln

(
wq(t)

wq−1(t)

)
+

1

γ
ln
(
1 +

γ

k

)
and

sup
δa

λa(δa) [u(t, x+ s+ δa, q − 1, s)− u(t, x, q, s)]

= − γ

k + γ
A exp(−kδa∗)u(t, x, q, s)

= −A
γ

k + γ

(
1 +

γ

k

)− k
γ wq−1(t)

wq(t)
u(t, x, q, s)

Hence, putting the three terms together we get:

∂tu(t, x, q, s) + µ∂su(t, x, q, s) +
1

2
σ2∂2

ssu(t, x, q, s)

+ sup
δa

λa(δa) [u(t, x+ s+ δa, q − 1, s)− u(t, x, q, s)]

= −γ

k

ẇq(t)

wq(t)
u− γµqu+

γ2σ2

2
q2u−A

γ

k + γ

(
1 +

γ

k

)− k
γ wq−1(t)

wq(t)
u

= −γ

k

u

wq(t)

[
ẇq(t) + kµqwq(t)−

kγσ2

2
q2wq(t) +A

(
1 +

γ

k

)−(
1+ k

γ

)
wq−1(t)

]
= 0

Now, noticing that the boundary and terminal conditions for wq are consistent with the
conditions on u, we get that u verifies (HJB).

Now, we need to verify that u is indeed the value function associated to the problem and
to prove that our candidate (δa∗t )t is indeed the optimal control. To that purpose, let us
consider a control ν ∈ A and let us consider the following processes for τ ∈ [t, T ]:
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dSt,s
τ = µdτ + σdWτ , St,s

t = s

dXt,x,ν
τ = (Sτ + ντ )dN

a
τ , Xt,x,ν

t = x

dqt,q,ντ = −dNa
τ , qt,q,νt = q

where the point process has stochastic intensity (λτ )τ with λτ = Ae−kντ 1qτ−≥1
24.

Now, let us write Itô’s formula for u since u is smooth:

u(T,Xt,x,ν
T− , qt,q,νT− , St,s

T ) = u(t, x, q, s)

+

∫ T

t

(
∂τu(τ,X

t,x,ν
τ− , qt,q,ντ− , St,s

τ ) + µ∂su(τ,X
t,x,ν
τ− , qt,q,ντ− , St,s

τ ) +
σ2

2
∂2
ssu(τ,X

t,x,ν
τ− , qt,q,ντ− , St,s

τ )

)
dτ

+

∫ T

t

(
u(τ,Xt,x,ν

τ− + St,s
τ + ντ , q

t,q,ν
τ− − 1, St,s

τ )− u(τ,Xt,x,ν
τ− , qt,q,ντ− , St,s

τ )
)
λτdτ

+

∫ T

t
σ∂su(τ,X

t,x,ν
τ− , qt,q,ντ− , St,s

τ )dWτ

+

∫ T

t

(
u(τ,Xt,x,ν

τ− + St,s
τ + ντ , q

t,q,ν
τ− − 1, St,s

τ )− u(τ,Xt,x,ν
τ− , qt,q,ντ− , St,s

τ )
)
dMa

τ

where Ma is the compensated process associated to Na for the intensity process (λτ )τ .

Now, we have to ensure that the last two integrals consist of martingales so that their
mean is 0. To that purpose, let us notice that ∂su = −γqu and hence we just have to prove
that:

E
[∫ T

t
u(τ,Xt,x,ν

τ− , qt,q,ντ− , St,s
τ )2dτ

]
< +∞

E
[∫ T

t

∣∣∣u(τ,Xt,x,ν
τ− + St,s

τ + ντ , q
t,q,ν
τ− − 1, St,s

τ )
∣∣∣λτdτ

]
< +∞

and

E
[∫ T

t

∣∣∣u(τ,Xt,x,ν
τ− , qt,q,ντ− , St,s

τ )
∣∣∣λτdτ

]
< +∞

Now, remember that the process qt,q,ν takes values between 0 and q and that t ∈ [0, T ].
Hence, ∃ε > 0, wq(t) > ε for the values of t and q under scrutiny and:

u(τ,Xt,x,ν
τ , qt,q,ντ , St,s

τ )2 ≤ ε−
2γ
k exp

(
−2γ(Xt,x,ν

τ + qt,q,ντ St,s
τ )
)

≤ ε−
2γ
k exp

(
−2γ(x− q∥ν−∥∞ + 2q inf

τ∈[t,T ]
St,s
τ 1infτ∈[t,T ] S

t,s
τ <0)

)
≤ ε−

2γ
k exp

(
−2γ(x− q∥ν−∥∞)

)(
1 + exp

(
−2γq inf

τ∈[t,T ]
St,s
τ

))
Hence:

E
[∫ T

t
u(τ,Xt,x,ν

τ , qt,q,ντ , St,s
τ )2dτ

]
= E

[∫ T

t
u(τ,Xt,x,ν

τ− , qt,q,ντ− , St,s
τ )2dτ

]

≤ ε−
2γ
k exp

(
−2γ(x− q∥ν−∥∞)

)
(T − t)

(
1 + E

[
exp

(
−2γq inf

τ∈[t,T ]
St,s
τ

)])
24This intensity being bounded since ν is bounded from below.
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≤ ε−
2γ
k exp

(
−2γ(x− q∥ν−∥∞)

)
(T − t)

(
1 + E

[
exp

(
−2γq inf

τ∈[t,T ]
St,s
τ

)])
≤ ε−

2γ
k exp

(
−2γ(x− q∥ν−∥∞)

)
(T − t)

(
1 + e−2γqsE

[
exp

(
2γqσ

√
T − t|Y |

)])
< +∞

where the last inequalities come from the reflection principle with Y ∼ N (0, 1) and the fact
that E

[
eC|Y |] < +∞ for any C ∈ R.

Now, the same argument works for the second and third integrals, noticing that ν is
bounded from below and that λ is bounded.

Hence, since we have, by construction25

∂τu(τ,X
t,x,ν
τ− , qt,q,ντ− , St,s

τ ) + µ∂su(τ,X
t,x,ν
τ− , qt,q,ντ− , St,s

τ ) +
σ2

2
∂2
ssu(τ,X

t,x,ν
τ− , qt,q,ντ− , St,s

τ )

+
(
u(τ,Xt,x,ν

τ− + St,s
τ + νt, q

t,q,ν
τ− − 1, St,s

τ )− u(τ,Xt,x,ν
τ− , qt,q,ντ− , St,s

τ )
)
λτ ≤ 0

we obtain that

E
[
u(T,Xt,x,ν

T , qt,q,νT , St,s
T )
]
= E

[
u(T,Xt,x,ν

T− , qt,q,νT− , St,s
T )
]
≤ u(t, x, q, s)

and this is true for all ν ∈ A. Since for ν = δa∗ we have an equality in the above inequality
we obtain that:

sup
ν∈A

E
[
u(T,Xt,x,ν

T , qt,q,νT , St,s
T )
]
≤ u(t, x, q, s) = E

[
u(T,Xt,x,δa∗

T , qt,q,δ
a∗

T , St,s
T )
]

This proves that u is the value function and that δa∗ is optimal.

Proof of Proposition 2:

We have that
∀q ∈ N, ẇq(t) = (αq2 − βq)wq(t)− ηwq−1(t)

Hence if we consider for a given Q ∈ N the vector w(t) =


w0(t)
w1(t)

...
wQ(t)

 we have that

w′(t) = Mw(t) where:

M =



0 0 · · · · · · · · · 0

−η α− β 0
. . .

. . .
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . . −η α(Q− 1)2 − β(Q− 1) 0
0 · · · · · · 0 −η αQ2 − βQ



with w(T ) =


1

e−kb

...
e−kbQ

. Hence we know that, if we consider a basis (f0, . . . , fQ) of eigen-

vectors (fj being associated to the eigenvalue αj2 − βj), there exists (c0, . . . , cQ) ∈ RQ+1

independent of T such that:

25This inequality is also true when the portfolio is empty because of the boundary conditions.
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w(t) =

Q∑
j=0

cje
−(αj2−βj)(T−t)fj

Consequently, since we assumed that α > β, we have that w∞ := limT→+∞w(0) = c0f0.
Now, w∞ is characterized by:

(αq2 − βq)w∞
q = ηw∞

q−1, q > 0 w∞
0 = 1

As a consequence we have:

w∞
q =

ηq

q!

q∏
j=1

1

αj − β

The resulting asymptotic behavior for the optimal ask quote is:

lim
T→+∞

δa∗(0, q) =
1

k
ln

(
A

1 + γ
k

1

αq2 − βq

)

Proof of Proposition 3:

The result of Proposition 3 is obtained by induction. For q = 0 the result is obvious.
Now, if the result is true for some q we have that:

ẇq+1(t) = −
q∑

j=0

ηj+1

j!
e−kb(q−j)(T − t)j

Hence:

wq+1(t) = e−kb(q+1) +

q∑
j=0

ηj+1

(j + 1)!
e−kb(q−j)(T − t)j+1

wq+1(t) = e−kb(q+1) +

q+1∑
j=1

ηj

j!
e−kb(q−j+1)(T − t)j

wq+1(t) =

q+1∑
j=0

ηj

j!
e−kb(q+1−j)(T − t)j

This proves the results for w and then the result follows for the optimal quote.

Proof of Proposition 4:

Because the solutions depend continuously on b, we can directly get interested in the
limiting equation:

∀q ∈ N, ẇq(t) = (αq2 − βq)wq(t)− ηwq−1(t)

with wq(T ) = 1q=0 and w0 = 1.

Then, if we define vq(t) = limb→+∞
wb,q(t)
Aq , v solves:

∀q ∈ N, v̇q(t) = (αq2 − βq)vq(t)− η̃vq−1(t)

with vq(T ) = 1q=0 and v0 = 1, where η̃ = η
A is independent of A.
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Hence vq(t) is independent of A.

Now, for the trading intensity we have:

lim
b→+∞

A exp (−kδa∗b (t, q)) = lim
b→+∞

Awb,q−1(t)

wb,q(t)

(
1 +

γ

k

)− k
γ

=
vq−1(t)

vq(t)

(
1 +

γ

k

)− k
γ

and this does not depend on A.

Eventually, since the limit of the trading intensity does not depend on A, the resulting
trading curve does not depend on A either.

Proof of Proposition 5:

Using the preceding proposition, we can now reason in terms of v and look for a solution
of the form vq(t) =

h(t)q

q! .
Then,

∀q ∈ N, v̇q(t) = −βqvq(t)− η̃vq−1(t), vq(T ) = 1q=0, v0 = 1

⇐⇒ h′(t) = −βh(t)− η̃ h(T ) = 0

Hence, if β = kµ ̸= 0, the solution writes vq(t) =
η̃q

q! (
exp(β(T−t))−1

β )q.
From Theorem 1, we obtain the limit of the optimal quote:

lim
b→+∞

δa∗b (t, q) =

(
1

k
ln

(
η

q

exp(β(T − t))− 1

β

)
+

1

γ
ln
(
1 +

γ

k

))
Using the expression for η̃, this can also be written:

1

k
ln

(
A

1 + γ
k

1

q

eβ(T−t) − 1

β

)
Now, the for the trading intensity we get:

lim
b→+∞

A exp (−kδa∗b (t, q)) =
(
1 +

γ

k

)
q

β

eβ(T−t) − 1

Hence, because the limit of the intensity is proportional to q, the limit V (t) of the trading
curve is characterized by the following ODE:

V ′(t) = −
(
1 +

γ

k

)
V (t)

β

eβ(T−t) − 1
, V (0) = q0

Solving this equation, we get:

V (t) = q0 exp

(
−
(
1 +

γ

k

)∫ t

0

β

eβ(T−s) − 1
ds

)
= q0 exp

(
−
(
1 +

γ

k

)∫ eβT

eβ(T−t)

1

ξ(ξ − 1)
dξ

)

= q0 exp

(
−
(
1 +

γ

k

)[
ln

(
1− 1

ξ

)]eβT
eβ(T−t)

)

= q0

(
1− e−β(T−t)

1− e−βT

)1+ γ
k
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When β = 0 (i.e. µ = 0) we proceed in the same way or by a continuity argument.
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